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CHAPTER I

INTRODUCTION

Chisholm's Third Law:

Proposals, as understood by the proposer, will
be judged otherwise by others.

Lilly's Metalaw:

All laws are simulations of reality.

Levy's Ninth Law:

Only God can make a random selection.

Both discrete-event and continuous simulations

are frequently used to model analytically intractable

stochastic systems. Examples of such systems are city

traffic flow, telecommunications networks, military war

games, and computer time-sharing systems. Due to the

complexity of these systems, simulation is often the

only viable means of studying them. There are, however,

significant tactical problems involving autocorrelated

outputs and initialization bias which complicate the

analysis of such simulations. The regenerative method

is a recently developed technique for analyzing simula-

tion output which promises to alleviate these problems.

1
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1.1 Estimating Mean Response Time in the M// Queue

To illustrate the use of the regenerative

method, we will consider the estimation of the expected

stationary waiting time UW in an M/M/i queue. The pro-

,e cess to be analyzed is (Wj : j > 11, the waiting times

of successive customers. In the regenerative method,

times at which an arriving customer finds the system

empty and idle are of particular interest. Given an

arrival rate X, a service rate P, and a traffic inten-

sity p - A/U < 1, it can be shown (CRAN74(I)] that with

probability 1 there is an increasing sequence of

integer-valued random variables B1, 02, 83, ..- such

that Wa - 0 for all positive integers j. That is, any

customer numbered Oj will arrive to find the system

empty and will be serviced immediately. The arrival

times for the customers indexed by Bj define regenera-

tion points for the system. At each of these points,

system operation begins anew with the same probabilistic

structure that governed it at the time of the first

arrival. Thus, the process Wj may be partitioned into

blocks or cycles {Wi : Bj I i < Oj+l ) which are indepen-

dent and identically distributed (Lid). Any measure-

ments taken on these cycles will also be Lid. Let
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Yjm E Wj and at i + 1 -Bi,

where Yj represents the total waiting time of customers

served in the jth block and ai denotes the number of

customers in the jth block. Then the random vectors

(Y1 , ai) are iid. From regenerative analysis, we have

[CRAN75(I)J

j q-W and uaW E E[W) E E[Yl]/E halI.

Given the observations (Yi, Mi) 1 < i < n of n simu-

lated cycles, we compute the sample means Y and F in

order to form the following ratio estimator of lUW:

By computing the sample variance S2 of the quantities

A(Yi em : 1< i < n , we also obtain an approximate

100(1 8 )% confidence interval for liv(CRAM77J:

S

1-4/2
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If we require that the half-length of this interval fall

within some proportion d of the point being estimated,

then the required number of cycles is given by [DAIA6SJ

n - (z 1 - 6/ 2 /d) 2 (p 3 - 4p 2 + Sp + 2)/[p(l - p)],

and the expected amount of simulated time to obtain n

cycles in

t - (z 182/d)2 (p 3 - 40 2 + SP + 2)/(P (1 -p2.

Table 1.1 shown the required number of cycles for

various traffic intensities p vith X - 1 when we seek a

95% confidence interval whose half-length is SO of the

estimand q. Although the 1N/M/l queue is not typical of

most real-world systems because it is analytically

tractable, it is still representative of the cam-

putational costs required by the regenerative method of

simulation.

4)' 1.2 Problem Statement

Given a regenerative queueing simulation, the

problem we face is to redace, the sampling costs required

to obtain acceptable precision in simulatione-based esti-

mators. To do no, we most choose aplicable mggin
Edwt.19 tech. igu (VRWs) vhich Provide inreaWe pre-

cision .iiile, maintaining or reducirig the simulation rem
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TABLE 1. 1

REQUIRED SAMPLING VOLUME FOR KM/i WAITING TIMES

WITH £m.05, d - .05, ?X 1.0

Traffic Number of Expected
Intensity Cycles Run Length

p n t

.01 318,132 321,345

.05 72,469 76,283

.10 42,019 46,688

.15 32,099 37,764

.20 27,353 34,191

.25 24,714 32,952

.30 23,174 33,106

.40 21,923 36,538

.50 22,282 44,563

.60 24,178 60,445

.70 28,413 94,711

.80 37,955 189,776

.90 68,107 681,073

.95 129,316 2,586,327

.99 620,849 62,084,896
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length. In applying these VRTU, we are constrained by

the requirement for valid confidence intervals. Much

recent research has been devoted to VRTs in this

setting. Most of this research has produced mixed

results.

1.3 Objectives of the Research

The goals of this research are the development,

.implementation, and evaluation of techniques to improve

the efficiency of regenerative queueing simulations. We

have chosen to restrict ourselves to VRTs which do not

alter the sample path generated by a simulation model.

We sought to employ robust procedures which make effec-

tive use of auxiliary information produced by the simu-

lation and which may be applied to a variety of real-

world queueing situations. In light of this, we have

developed a regression-based technique using internal

control variables to achieve increased efficiency in the

simulation of regenerative queueing networks and we have

1established the asymptotic properties of the procedure

which ensure its validity and efficiency. This method

is evaluated in several selected experimental systems to
demonstrate its potential value.

.1 I
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CHAPTER II

LITERATURE REVIEW

2.1 The Regenerative Method

Crane and Iglehart pioneered the regenerative

method in a series of recent papers [CRAN74(I), (II),

75(111), (IV), IGLE75, 76]. The first of these deals

with the general multiserver queue.

Consider a GI/G/1 queue with service rate u,

arrival rate X, and traffic intensity p = A/u < 1. For

simplicity we assume that the zeroth customer arrives at

time t - 0 and finds the system empty and idle. In gen-

eral, the ith customer arrives at time ti, experiences

a waiting time Wj, and finally receives a service of

duration vi. The interarrival times are given by

ui - ti - ti. 1 , i > 1. We assume that the two sequences

{ui : i > 1) and {vi : i > 01 are mutually independent

and consist of iid random variables.

For this system, variates of interest include

Q(t), the number of customers in the system at time tj

A Wi , the waiting time of the ith customer; W(t), the

workload the server sees at time t; B(t), the amount of

time during the period (O,t] in which the server is

8
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busy; and D(t), the number of customers who completed

service during the period 10,t). Let Xn * Vn_1 - un and
n

Sn ! , Xi with SO - 0. Then for the processi-l

{Wn : n > 01, we have the following recursive

relationship:

W= 0 and Wn = (Wnl + Xn]+, n > 1 (2.1)

where aI+ max {O,a}. It can be shown that with prob-

ability one there exists a strictly increasing sequence

of integer-valued random variables {Bk : k > 0} such

that W k - 0 for k > 0. Customers numbered {0k} are

those arriving to find the system empty and idle. The

arrival of the customer with index Ok initiates the kth

busy period during which the server remains occupied.

At the end of this busy period, the kth idle period

begins and lasts until the customer indexed by Bk+1

arrives. A busy period and its succeeding idle period

form a busy cycle or tour. The number of customers

served in the kth busy period is given by

ai a i - >i.l, i > I.

Using Crane and Iglehart's notation, we let

a (vk-l,uk) and Yk a (Mk'Xakl+l, Xk-l+2, "*.,

The {k : k > 11 are iid and allow the observations to
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be divided into iid cycles. On each cycle we will

observe the following:

Ok1

flk E vi, (2.2)

k E uj (2.3)

i-k.l+l

Vk k - flk ,(2.4)

O'k-I

Ykl m E (S~k-l+j -S~k-l) ,(2.5)

Y()- Ykl + nk ,(2.6)

and

a k-l

yk(3 E[(Ss~..l+j S~k-l)vkl+j +.

i-a

1 2 (2.7)
2 (v~kl+i)1

where nk, 4k, and vk, respectively, represent the

durations of the busy period, busy cycle, and idle



period of the kth regenerative cycle; Yk(2 ) and Yk( 3 ),

respectively, denote the integrals of Q(t) and W1(t) over

the kth cycle. Note that all of these random variables

form iid sequences.

The regenerative property of the GI/G/l queue

insures that the processes {Wj1, {Q(t)), and {W(t)) con-

verge in distribution to corresponding steady-state

variates:

Wn W, Q(t) Qand W(t) W

From stochastic processes theory, we have:

E(cak1 exp( E P {Sn > 0} /n) ,(2.8)
na1

E(n)- E('3k1/ , (2.9)

EkJ- BUfak]/A , (2.10)

ENOk - (1 - P)E~ri~J/X , (2.11)

Elyk(l)] - E(WIE42kI (2.12)

Ely ()1- (XEMW + P)E(9kI a E0Q19kI (2.13)

and
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1 ~2
E[Yk( 3 )] -(pE[Wl + -'E[Vo1)E[k]

"E[EW*]E[Ek] (2.14)

Thus from our observed random variables, we may

calculate point estimates for the expected values of W,

Q, and W*.

Crane and Iglehart [CRAN75(III)] generalized

their analysis of multi-server queues to discrete-event

simulation models. We now let !(t) denote the model

status vector at (simulated) time t. If {X(t) : t > 01

is a regenerative process, then, subject to mild regu-

larity conditions, Crane and Iglehart showed that a

steady-state system status vector X exists such that

X(t) X.

If the goal of the simulation is to estimate

some steady-state performance measure r - E[f(X)], then

successive regeneration epochs {j) of the simulation

model are observed in order to accumulate the following

measurements over each cycle:

$j+1lJI.

Yj J f(*(t))dt and a, Sj+l j (2.15)

$j
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The random vectors {(Yj,ctj) :j 11i are therefore iid.

Crane and Iglehart show that under certain mild

regularity conditions,

r - E(Yl]/E(1 11 .(2.16)
4

For some systems these regularity conditions are that

the distribution function of al. is not arithmetic and

that 0 < EVa1] < ~

Suppose that n regenerative cycles {(Yj,aj):

1 <j < n} have been observed. Let Vj- Yj -raj. The

Vj's are iid with mean zero. if V, Y, and are the

sample means of V, Y, and a, respectively, then Y-

rcx. If 0 < a2 -Var(Vj <-, the Central Limit Theorem

gives us

limup < a = O(z) for all z (2.17)

wbere 0 is the standard normal distribution function.

This result may be written as

lim P r3 < z O (z) ,(2.18)
a V

or
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11.m P r r < z O (z) ,(2.19)
n-

where r - Y/-a. In order to obtain a confidence interval

from (2.19), we must estimate a. Now,

02 E[Vi1 -] [Y - rca1)
2 1

Var[Y1] - 2rCov(Y11ca1) + r2Vartcall . (2.20)

Let S2 and S2be the sample variances of Y and al

respetivey, ad le be the sample covariance of Y

and ca:

2SY (1/(n - 1)1 y - V2

j-i.

S 1/(n Z 1)1 j . ja
a u

and

Y [l(n - ) E (Yj - y) caj - 'a)2 * (2.21)

Les2  2 2rS2 a 2 i then we have 92 2wt

probability 1, and it follows that n 2 wt

lim j z O (z) for all: x (2.22)

. .
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An approximate 100(l - 6) percent confidence interval is

then given by

S
r + z1-6/2 An- (2.23)

where z1 - 6/2 -1(1 - 6/2).

Crane and Iglehart [CRAN75(III)] point out that

it may be possible to find a second sequence of random

variables {Bj : i > 0) which also define regeneration

points. If confidence intervals with lengths I(t) and

II(t), respectively, are constructed from the sequences

{(Yi,ai)} and {(Yj,a)} each of which are based on a

simulation run length t, then I(t)/I'(t) 1 I with

probability 1. Thus, if a simulator may choose between

two or more regeneration sequences, the lengths of the

confidence intervals will be approximately the same for

large t.

The preceding discussion was based upon the

assumption that a return state can be found with the

property that the expected time between returns is

finite and small enough so that a reasonable number of

cycles will be observed during the simulation. This may

not always be the case. Crane and Xglehart (CRAN7S(IV)]

offer some approximation techniques for obtaining
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confidence intervals when the simulation does not

contain a renewal process.

The first method presented to deal with this

problem is complete state-space discretization. For a

queueing system, this technique requires the approxima-

tion of the interarrival and service time distributions

which may only take on values {0, T, 2T, .0..} T > 0.

The choice of T is critical to this method. The smaller

T is chosen, the closer the new process will mimic the

original. A smaller T will also, however, result in

fewer observed cycles within a fixed simulation run.

A second method for handling the regeneration

problem is partial state-space discretization. Consider

the customer waiting times {Wn : n > 11. We shall

modify the original process as follows:

W, d, if d - e I. Wn I d + e 2.4

n Wn, otherwise

where d in a fixed waiting time and > 0 is the half-

length of the "trapping interval" around d. The entry

times ( (d) : i > 11 to d are the regeneration times

for the modified process. The confidence interval

methods developed earlier may now be applied to the

modified process. As c * 0, the modified process
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should approximate the original process more closely,

but fewer of the required regeneration cycles will be
*

observed.

The third technique suggested by Crane and

A Iglehart is stochastic bounding. This method requires

the simulator to define two new processes which bound

the original. Thus, in finding confidence intervals for

the new processes, a confidence interval for the

original may be found. Stochastic bounding uses the

same scheme as partial state-space discretization in

that it is based upon selecting a trapping interval

[d - e, d + el about d. For the customer waiting time,

our new processes are

W if d n I d + (2.25)
Wn, otherwise

and

d + e, if d C < Wn <d+ C*W a- - (2.26)

Wn, otherwise 
.

These processes bound the original:

P{Wn w) I P({W w) < P(. < W} (2.27)
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for all w > 0; and if f : 4- R is a measurable,

monotonically increasing function,

Elf(W')] < E(f(W)] < E[f(WU)] (2.28)

where W' A W' and W; -- W". Using d - e and d + e asn n

the regenerative states for {W' I and {W" ), respec-n n
tively, we find their 100(1 - 6/2)% confidence intervals

in the standard manner. If we take the lower limit of

the confidence interval for E[f(WI)] and the upper limit

of the confidence interval for Eff(W")] to construct a

confidence interval for Elf(W)], we have a minimum of

100(l - 6)% coverage.

The last method suggested by Crane and Iglehart

for approximating a regenerative system is the use of

approximate regeneration times. As in partial state

space discretization, the entry times {01(d) : i > 1} to

a trapping interval [d -E , d + el are taken as the

regeneration times. Observations of the process are

collected as for any regenerative system, and confidence

intervals are constructed by the standard method. For a

small c, this method produces results similar to those

which would be obtained from the original process in the

normal manner. The blocks for this modified process are

not lid. If the correlation between successive blocks

............................
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is calculated, the simulator can get some idea of the

validity of his confidence interval.
t

-- Gunther and Wolff [GUNTS0] re.ently proposed the

Almost Regenerative Method for handling regenerative

processes which have infrequent regeneration points.

For simplicity they assumed that at each regeneration

point On there is a change of state in the process

{X(t)} from some fixed state u to some fixed state v, u,

v e E, the state space of X. (They indicate that this

is not necessarily a requirement, but that it gives them

a method to compare their technique to the regenerative

method.) Let U and V be disjoint subsets of E. (U and

V do not have to partition E.) Let On' denote the time

of the nth transition of {X(t)} from any state in U to

any state in V. For the Almost Regenerative Method,

the {O n > 0} are the regeneration points and the

duration of the nth cycle is o' - O' - 8' n > 1. The
n n n-lmn -- h

process {X(t)1 is observed for m' "cycles" and the pairs

{( Ii)) are collected. The estimate of E3f(X)] is

given by

r . (2.29)

If the underlying process (X(t)) is regenerative and

u c U and v c V, Gunther and Wolff were able to show
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that ' is a consistent estimator of E[f(X)1 with an

asymptotically normal distribution.

*Gunther and Wolff offered total amount of work

in the network and number in system as methods of

selecting U and V. Their selection is based upon

desiring to estimate specific response variables. The

choice of an appropriate U and V is critical, and an

improper selection may give uncertain results. For

well-chosen U and V, they were able to obtain smaller

variances than the standard regenerative method,

although they point out that this may be directly

attributed to the larger number of cycles which they

were able to obtain.

2.2 Variance Reduction Techniques

We have seen that large sample sizes are

frequently required in regenerative simulation. We

shall next examine some common variance reduction

techniques which may be employed to reduce run length.

2.2.1 Stratified Sampling

In stratified sampling, observations are

collected on the simulation response Y and a stratifica-

tion variable X which has a known distribution and a

strong but highly nonlinear dependence on Y. Strata



are form by partitioning the rang* of X Into L I. O

{Sk : 1 < k < LW., Bach strattus is then examinod

seartey o bti a cu.omrspndiA sratfie rablem

sample of the response!Y. Por 1 <1L et

4
Wk P{XtSk} 2.0

I&Yk 3 311 X KSO (2.31)

and

a2 *EU!y - jxeSkJ.j (2.32)

Suppose we sample nk simulation re spouses {Ykj
1 < J1 n k) from each stratus Sk. The sample mean for

each stratum is given by

ntk

'4 k -(link) E. !kj *(2.33)

and the stratifiLed estimator of zY, is

k.yk

1is as W0S804 *tutas mn e " VO44M
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- L 2 2
Var[Ys] kE lWkoYk/nk .(2.35)

If sampling over the strata is done

proportionally, i.e., nk - nWk, 1 < k < L, then Ysp

denotes the stratified estimator of U.y; and we have:

L 2
*Var[Yspi - (1n IklWkayk

2L 2a /n - (1/n) E Wk(.y W ~y (2.36)
k= 1

If the stratum means are not all equal, Var[Yspi will be

strictly less than the variance a2In of the mean of theY
unstratified sample. If the within-stratum variances

((2
Y widely differ, it is desirable to sample more

heavily from the strata with larger variability. Using

the optimal (Neyman) sampling scheme

L
nk n * (WkaYk)/( E WICy0) , 1 < k < L , (2.3-,'

the maximum variance reduction is achieved. This

allocation presupposes koowledge of the (a 2 in moatYk
simulations this is unknown but may be estimated in

-1 -----
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preliminary runs. Once the allocations have been

established, the sample variances

njk
S 2  = Cl/(njk - 1)] 'Z (Yicj - fk2(2.38)

& j=i.

may be calculated and used to estimate Varlysi:

L22
Var[Ys] E WS /njk (2.39)

kl k SYk

If Yk is normally distributed with mean IlYk and variance

a 2I then an approximate 100(l - 6)% confidence interval

for lUy is given by

Ys ±. t 1 -6/2(ne def.) *('QarEYs]) 12(2.40)

where ne is given by [WELC561

L
ne -(Oar(Ysl) 2/ Z (WkSyk)4/tn2(n -1)

k-l k k (2.41)

Stratification is generally difficult to apply

in simulation. While many methods for large variance

reductions have been devised for specific cases, there

* are no general techniques for queueing simulations.
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2.2.2 Control Variates

Control variates are random variables with known

*expectations which have a strong linear correlation with

.some response variable of interest. To apply control

variables to a simulation, a new estimator is formed

which is the original estimator plus a linear

combination of the control variables.

Let C be a column vector of Q control variables

C = [CI, ..., CQ]T (2.42)

with expectation vector PC. A controlled estimator of

the simulation response Y is given by

i
Y(a) - Y - aT(C - PC) ( (2.43)

I Y(a) is an unbiased estimator of Py for any fixed vector

a of control coefficients, and its variance is minimized

with the optimal control coefficient vector

a - I C  (2.44)

where EC is the covariance matrix of C and ayC is the

column vector of covariances between Y and the com-

*ponents of C. The minimum variance obtained with ao is

given by
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2Var[Y(ao)] - (1 Ric)Var[Y] (2.45)

where

2 T-1 (.6
RyC y yC/V~ar[Yj (.6

is the square of the coefficient of multiple correlation

between Y and C.

Under ideal conditions,

Y(a o ) - iy + e (2.47)

where e is an irreducible error term with expected value

zero. Combining (2.43) and (2.47), we have the standard

linear regression model

Y + (C- + C. (2.48)

If we make K > Q + 1 independent replications of

the simulation and we let Yk and Ck be the observed

values from the kth run, then we will obtain K iid

observations of the random vector.

Zk k 1~: l< k <K (2.49)

The (2k) have mean vector
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=Z (2.50)

and covariance matrix

I ay ¥c (2.51)

Lz Oc rc ]
lo - 1 "." (cQL - UQ_e1

Let X= (2.52)
(ClK Ul) .. (CQK UQ

Sand 8 . (2.53)
Ean []
Equation (2.48) may therefore be expressed as

IY - X0 + c . (2.54)

The least squares estimator for 8 is

-(XTx)-IXTY . (2.55)

- Lavenberg (LAVE78] was able to show that the straight-

t forward estimator

ao c ?Yc (2.56)

" - '" .. . ...... i' . ... ' ... . . . ....i.. ... ....c
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obtained by inserting sample covariances into (2.44)

coincides with (2.55). The least squares estimator of

* 'y is therefore given by

eA -~a Y O(C - PC (2.57)

This method of applying control variables hasA

some problems. Since ao is an estimate, minimum

Fvariance for Y(ao ) will not be achieved. The dependence
Abetween ao and C generally produces a biased estimator! I A

of py. Additionally, dependence among the Yk(ao) pre-

vents us from constructing a confidence interval using

the t statistic. There are two methods available for

handling these problems.

If Z has a multivariate normal distribution,

then the conditional distribution of Y given C - c is

univariate normal with

E[l C - c] - Ty + (To(c - PC) (2.58)

and

2J 2
C(

Var[XC 2~- (1 2 2 2.59
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We may now construct a 100(1 -6)% confidence interval

for 1&y:

Y(&ao) ± t tl62K0 1/2 (2.60)

where 911 is the row It, column I entry of (XTX)'l

Lavenberg (LAVE78J has provided an excpression for the

loss in variance reduction caused by estimating a0:

Var[Y(aSo)]/Var[Y(ao)] - (K - 2)/(K - Q - 2)
(2.61)

when K > Q + 2.

A second technique for developing confidence

intervals which is unconstrained by the distribution of

is based on jackknifing. Let V~k(aoa) be the estimator

of the same form as Y(a0 ) but with the single vector

k omitted. The pseudo-values are

Ok a KY(a0 ) - (K - l)Y-k ( o) , 1 < k (K (2.62)

with the point estimate of Uly given by

r- (1/K) E Ok* (2.63)

The sample variance of the pseudo-values is



29

-2K

^ [1)) (Ok - j)2 . (2.64)
e k-I

Thus an approximate 100(1 - a)% confidence interval for

Uy is
4

+_tl-6/2;K-I _ c,,/Kl/2 .(2.65)

Since Y(aO ) is the least squares estimate of lay, this

technique is equivalent to jackknifing the point

estimator of the first method.

2.2.3 Importance Sampling

Importance sampling completely replaces the

original sampling process with another one. To correct

any distortion which may arise, the observations are

weighted so that their weighted average still gives an

unbiased estimate of the mean of the original process.

This technique is somewhat akin to stratified sampling

in that the sampling process is changed and the

* observations are weighted differently.

Suppose the objective of the simulation is to

evaluate the integral

0 -. ID g(x)f(x)dx (2.66)



30

where f(x) is a density function. The crude Monte Carlo

procedure would be to randomly sample n values of a

* variate X having the density f(x) and take

A n
eb (1/n)- g (Xi) (2.67)

as an estimator of e. Let M~Y) be another density
function. Then

0- fD [(g(y)f(y))/h(y)]h(y)dXv (2.68)

Let

g *(y) (g(y)f(y))/h(y) .(2.69)

Then

E(g*(y)] f~g*(y)h(y.)dy e (2.70)

Thus, if we randomly sample n values of a variate Y

having the density M~y), our estimator of 0 is

A n
O h -(1/n) Z g*(Yi) *(2.71)

Ninimuim variance of the sampling etimator *h is

achieved whien (KAEMS3I

h I 4g() f (Y))/Ud g(i) f f(.a) u 1 (2.72)
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This implies, however, that we already know the value of

e: If h(y) is chosen to closely mimic g(y)f(y), a large

* variance reduction may be obtained. If h(y) is chosen

poorly, a variance increase may be observed.

Importance sampling was developed for use in

Monte Carlo work and has given excellent results there

[KAHN53, KLEI741. However, the technique is more dif-

ficult to apply to discrete-event simulation and the

results are frequently less favorable.

Moy [MOY65] proposed a "standard" type of new

density function to be used in importance sampling for

simulation. This "standard" function does not require

extensive system analysis in order to select a density.

Suppose X is the response variable from a simulation run

which uses a sequence of (pseudo) random numbers

{rl, ... , rml of length m. Givea that m is fixed, we

have:

X I g(rl, .., rm) - g(R) . (2.73)

The expected value of X is given by

SI0 g(rl, ..., rm)f(rl, ..., ra)

•(drl ... dra)

-a g(R)f(R)dR . (2.74)

M E EMd
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Since the random numbers are independent, we have

.. , rm) fl(ri) ... fiu(rm) ,(2.75)

where fj is the jth marginal density. Thase marginals

must also be identical. Let fj(rj) =s(rj). Then

f(R) - fl(ri) ... fm(rm)

- (rl) *so s(rm) .(2.76)

Since we are dealing with random numbers uniformly

distributed over [0,11, we have

s(rj) 10< j . (2.77)K0 otherwise

Therefore,

f(R) 1, 0 .j11 o l (2.78)
- 0, otherwise

The expectation of X then is

six]I (R)f(R)dR

so,~ g(R)dR
0 0 .-

I ~~ .. I [(R)/h(R)Jh(R)dR . (2.79)
o 0



If MR) is a Joint density 
function, we may sample 

the 3

input vector R from hMR) and use the importance sampling

* estimator

-* g(R)/h(R) .(2.80)

Kleijnen [KLEl74I uses the term "importance numbers" to

distinguish between stochastic variables with an alter-

native density M(R) and random numbers having the stan-

dard density (2.78). The variance of the importance

sampling estimator is

Var[g*(R)l =IM (g2(R)f2(R))/h2(R)lh(R)dR

(E[X]) 2 
.(2.81)

Selection of M(R) is again critical, and Moy recommended

the sampling density

11n )(a-)1exp{tn(ca)*rj1

h(R1Q) 0 <5 rj j 1 for all j(2.82)

0 otherwise

where a in a parameter which he estimated by using a

numerical technique to solve a sample version of the

equation
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.- Var[g*(R;c)] - 0 . (2.83)

* In H/M/l queueing systems, Moy obtained variance

reductions of 33% to 54% using this approach. He also

found that the reduction was fairly insensitive to the

estimate of a. He also showed that in a variety of

systems a remained fairly constant with a value of 1.12.

In more complex systems, oy's approach produced

variance increases.

2.2.4 Antithetic Variates

The antithetic variate method is used to create

negative correlation between paired observations of a

response variable. One observation is generated from a

sequence of input random numbers and the second obser-

vation uses the corresponding complimentary sequence of

random numbers.

Suppose U is the mean response of the system.

If we make a pair of simulation runs using random num-

bers {ril on the first run and (l - ri)} on the second

in order to obtain the responses XI and X2, then we

estimate V by

K - T(X1 + X2 ) (2.84)

?r
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The variance of X is given by

Vat!) Var[X I + I Var EX2 I + Cov(X 1 ,X2 )

(2.85)

Thus Var(X will be less than the mean of two

independent replications if Cov(Xl,X2) is negative.

Suppose X depends on Y and that X is a

monotonically increasing function g, of Y. If Y is

generated from the random number r by Y - F-l(r), then Y
Y

is a monotonically increasing function g2 of r. This

implies that X is a monotonically increasing function

93 = g1 0 g2 of r. Thus a high value of r yields a high

value of X, but its artithetic partner gives a low value

of X. Therefore, intuitively, 93 (r) and g3 (l - r) are

negatively correlated.

In simulating a single-channel queueing system,

Pritsker EPRIT791 points out that rather than using the

actual antithetic pairs, the same effect is achieved by

* switching the random number streams used by the inter-

arrival and service time processes. This results from

the fact that long service times increase traffic

intensity while long interarrival tines will decrease

it.
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Antithetic variates should be 
used with some

caution. If the response variable X has a symmetric

* distribution and the inverse transformation method is

used to sample X, then the correlation between anti-

thetic partners is -1 and a 100% variance reduction is

realized. For non-symmetric distributions, the negative

correlation is somewhat weaker, giving smaller reduc-

tions. In some cases, the use of antithetic variates

can produce a variance increase.

2.2.5 Common Random Numbers

Common random numbers are employed when the

simulator is studying more than one system and needs to

choose among them. The responses of interest are not

the individual system responses, but the differences

between them. In order to determine these variations,

we attempt to run the systems under the same conditions.

To accomplish this, the same initial conditions should

be used, and the same random number streams should be

used to drive similar input processes (service times,

interarrival times, etc.). This usage of common random

numbers results in positive correlation between alter-

* native system responses, say X1 and X2. The variance of

their difference is then given by

EKn& , i . .... ... ..... .. . . ..... •. . . ..
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Var[Xl - X21 Var[Xl) + Var[X2J

- 2Cov(XI,X 2 ) . (2.86)

Compared to the standard approach of using two

independent runs, a variance reduction will be observed

if a positive correlation exists between X1 and X2. If

large values of r result in large values of X1 and X2,

then a variance reduction will occtur.

In these simulations, the technique requires

that we operate under similar conditions. In addition

to the same initial conditions, this implies that the

same random number should be used in each simulation at

the same juncture in the operation of each process.

Kleijnen [KLEI74] states that this "synchronizationm

could be maintained more easily if each stochastic input

variable has its own random number stream. Garman

(GARM71] suggests using a single random number stream

but discarding some numbers to maintain synchronization.

Large variance reductions may be obtained using

this method. (Kleijnen [KLEI74] cites reductions as

great as 90 percent). This technique is advantageous in

that additional programming and run time are minimal.I This method has been used in conjunction with antithetic

variates with mixed results.
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2.2.6 Application of Conservation Equations

For regenerative queueing simulations, the use

*of conservation equations to estimate steady-state para-

meters can produce significant variance reductions.

Carson and Law [CARS80] demonstrated their use for

GI/G/s queues. In the GI/G/s simulation, values of

interest include the mean delay in queue PW, the average

number in queue UL, the mean sojourn time in system UD,

the average number in system v(), and the average amount

of work in system, UW*. Let X be the arrival rate and V

be the service rate. We also define:

y(l) - total waiting time of customers in the

ith cycle,

ai a number of customers served in the ith

cycle,

Ci - length of the ith cycle,

ni - total service time of customers in the

ith cycle,

jand y131 total work in the ith cycle.

Let Y(l), j, , , y(2), and Y(3) be their respective

sample means computed over n cycles. For direct

..----
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simulation, we use the following estimators as discussed

in section 2.1:

C - 7()/~ ,(2.87)

UL .L/ (2.88)

1UD - ()/ (2.89)

UQ - ()/ (2.90)

The parameters uW U~L, P~D, IJQ, and 1V* are related by

the conservation equations for the system:

ULL - Ai'W (2.92)

11D - 1'W + (1/li) ,(2.93)

UQ 0 XUD(2.94)

and U* (X/L)lUW + (X/2)Ejv2j, (2.95)

where v is the service time variate. For any simulation

7 of a GZ/G/s queue, A, y, and Ely2 1 are known. Thus, any

- ~estimate of any of the five parameters may be used to

estimate any of the others. Carson and Law [CABSSO]

showed that the most efficient estimator of OW~ is INW,

the direct simulation estimatori for other parameters.
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the conservation equations were shown to give more

efficient estimators:
p

1AL - AlW , (2.96)

PD +.(/a (2.97)S

PQ XU + (1/0z (2.98)

and -W* (X/p)UW + (A/2)E[v 2] o (2.99)

Using this scheme with 1, 2, and 4 servers,

Carson and Law (CARS80 obtained 0 to 99% variance

reductions. An additional advantage of this method is

the computational savings. Only y(1) and a. need to be

collected and used to compute UW.

2.3 Use of Control Variables in Regenerative Analysis

Control variables have been applied to a variety

of queueing networks with varying degrees of success.

For some systems, many effective control variables may

be found and easily implemented. In other cases,

however, it may prove extremely difficult to find even

one such variable and to implement it if one is located.

Lavenberg et al. [LAVE78] explored some

* controls for closed queueing networks. These networks

have a finite number S of interconnected service centers
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each having a single or multiple server queue. There

are a finite number of customers N which circulate among

* the centers. While multiple customer types were con-

sidered, for simplicity wq will only examine the single-

*. type case. This still leaves a broad class of networks

since there are no restrictions placed upon the service

time distribution, the queueing discipline, or the queue

capacity at each station. Some assumptions are made:

1. The sequence of entries to the service centers

forms an irreducible Narkov chain with a state

space contained in the set of service centers

and a fixed transition probability matrix

P [pij].

2. The sequence of service times at each center i

is a sequence of iid non-negative random

variables distributed as the random variable Ti.

3. The above sequences are mutually independent.

From pij's the long-run relative frequency

wi with which a customer visits center i may be

calculated in the usual way:
S

S'rP ir and E ji w 1 (2.100)

* Lavenberg et al. defined an event to be the

departure of a customer from a service oentert and the

JV.
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customer's service time is associated with that event.

Let

ei(M) - number of events associated with service

center i in the first M4 events.

and

Wi() - sum of the service times for the events

included above.

Using these, Lavenberg et al. developed the following

control variables:

I. Wj(M)/ej(M), a service time variable which

represents the sample average service time

observed at center i;

2. ej(M)/M, a flow variable which represents the

portion of events occurring at center ii and

3. Wi(M)/K, a work variable which represents the

ratio of completed work at station i to the

number of events.

Lavenberg et al. proved that

lim E[Wi(l)/ei(l)] - e(Ti] , (2.101)

lim 3(et4K)/KI - w1 , (2.102)
N.-
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and

liMr ELWJ(K)/41 lrjE[Tj (2.103)

The following response characteristics were

* examined:

wts - average waiting time at station s,

A steady-state service completion rate, and

rt -average time for a customer departing a

given station to return to that station.

After applying the control variables to estimate the

above performance measures, Lavenberg et al. found that

the work variables produced larger variance reductions

than the service time or flow variables individually or

together. Using all of the work variables defined on

the network, they were able to obtain confidence inter-

val coverage comparable to the uncontrolled estimates

based on the Student-t statistic. Comparing the results

* obtained from multinormal regression theory with the

results based on Jackknifin g regression, they fouand that

* the intervals produced by the first method moe signift-

cantly narrower &nd required mch less cmpstation to

obtain. They further point out that work variables give
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a substantial variance reduction provided that the loss

factor (K - 2)/(K - Q -2) discussed in s 2.2.2 is not

* too large.

Lavenberg et al. CLAVE791 studied multiple

control variables applied to regenerative simulation,

with emphasis on obtaining valid confidence intervals.

The GI/G/l queue and several central-server models were

studied. Under uncontrolled regenerative simulation, a

steady-state system parameter r is expressed as a ratio

of expected values

r - E(YJ/Etal , (2.104)

where Y and a are appropriate random variables

accumulated over a single regenerative cycle. (This is

the standard regenerative notation established in sec-

tion 2.1.) The system is simulated for a prespecified

number of cycles or for a given amount of simulated

time, and the pairs f (Y,ai)I are collected. Frequently

several long-run average system parameters c(k),

1 < k < K, have known values and can be expressed as

* c(k) - gjy(k)l/ZE*(k)) , (2.10S)

where a(k) and y(k) are auxiliary variables defined with

respect to a single tour. Let

"I.



(1n ~ (2.106)
i 1

ii/n) Z i(2.107)
i-l

r f r (2.108)

Tk) Yl~k) - c(k)o~k) (2.109)

'f(k) -(1/n) Z Zfk) ,(2.110)

K
and r(a) r +~ E akC(k)/0-, (2.111)

whore a a (ajl ., as). Thus r is the standard

regenerative ratio estimator of r,. r(a) is the top-

controlled ratio estimator, and {Z(k)/*} are the control

variables. Lavenberg at al. established that r(a) is

strongly consistent. Let

<4 K

a2(a) Var[Y -re +- E akZ(k)) ,(2.112)

and
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S2(a) -[l/(n -1)] Z [Yj -a

Z k(z±(k) - Tf(k))J2. (2.113)
k-i

Lavenberg et al. state that

liiu S2(a) 02(a) with probability 1 (2.114)

and that

lim Pr(/i (- a. r)/S(a) < z) o (z) .(2.115)
n4*m

From this, a confidence interval may be constructed

for r.

For the GI/G/1 queue, the response variable

studied was the steady-state mean time in system, VID.

L~et

Q M (l) - L(2) -number of customers served in

a tour,

5Y -total time in system for all customers

served in a tour,

* ~YMl a duration of a tour, and

y(2) a duration of a busy period.
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If the arrival rate is X and the service rate is Vi, then

- (2.116)

and

*E[y( 2 )1 EEa1/ji (2.117)

The control variables selected were

*fk/a ly~k) - c(k)& (k)If-(k)

(V(k)/j;) - c(k), k - 1, 2 ,(2.118)

where c(2l) *1/A and c(2) . /u

Lavonberg et al. used the controls with the

estimated optimal control coefficient a0 determined by

two methods. In the first, or dependent, method a0 is

estimated from the first m of the n (m < n) tours used

to construct the confidence interval f or r. In the

second, or independent, method a0 is estimated from m

tours that are statistically independent of the n tours,

Independent estimation of a produced smaller variance

reductions than were obtained with dependent estimation

of ao. Confidence interval coverage was maintained at

nominal levels with independent estimation but wasn

significantly loe with dependent estimiation.
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Iglehart and Lewis EIGLE791 also proposed a

series of control variables for regenerative simulation.

* a They concentrated their efforts on the estimation of the

steady-state mean waiting time JJW in the GI/G/l queue.

Iglehart and Lewis looked for controls which are highly

correlated with Yl - rcti and have the form Cl - Dl-

a U where U is the service rate. Dl is an attempt to

mimic YI. Using the recursive relationship (21)

relating successive waiting times, they suggested the

following alternatives for Dl:

DG ) - 0 = 1  l (2.119)
1 WO+ Wl a l > 2

WO- 0 M l - 1

D(2 WO + Wl l - 2 (2.120)
1

W10 + 111 + X+ uri 3

DM3  W 12 (2.121)
1

and

DM No + 0 1 aG~ 2 *(2.122)

NO0 + W11 + W12 al 3~

- j -
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Thus, the controls are Cl(i) = Dl(i ) - Ql/P , i

1, 2, 3, 4. Iglehart and Lewis point out that it is

* more difficult to calculate E[Dl(i)] as i increases, but

that Dl(i) more closely mimics Yl as i increases.

In testing their controls for an M/M/l queue,

they found that Cl(2), and Cl( 3), and Cl(4 ) performed

much better than Cj(1); but that C1( 3) and C1(4) gave

little improvement over the much simpler Cl(2 ). There-

fore, they selected C1 (2 ) as the most desirable control.

Using Cl(2 ), they were able to obtain an average 50%

variance reduction in the estimation of mean waiting

time over a wide range of traffic intensities.

Wilson (WILS79] also investigated potential

control variables for regenerative simulation. The net-

works he considered were assumed to possess finite

expected cycle lengths and finite expected customer

counts at each station for each cycle. The input pro-

cess for each station i {Xk(i) : k > 1} (i.e., observed

interarrival times or service times) is assumed to have

a known distribution Fi wi-h mean vi and variance a20
i

Let

g(i,t) number of service times that are

sampled at station i in the time

period [O,tI,
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* In(l,t) -number of service times that are

completed at station i in the time

* period [O,t],

and

i:1 For each station i, Wilson proposed three "standardizedw

control variables. The first of these is given by

Ci~)(t - g(i,t)] 1 "2 E (Xk(i) -i/G

koi (2.123)

j Wilson was able to show that

Cj (I) t) __ 1(011) (2.124)

*at each station i. His second control in a standardized

work variable for Lavenberg's closed networks:

4P Cj(2 )(t) - {n(i,t)jl/2/[n*(t)wiIJ.

n(i,t)
E (Xk(i) - )Ai )/Oi (2.125)

kai

where wi is the long-run relative frequency with which a

customer visits station i. For such a closed network,
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Ci(2)(t) N(0,1) (2.126)

at each station i. Ci( 2 ) takes into account information

about network traffic flow as well as the input pro-Icesses. For networks in which some subset Kj of the

stations operate independently of one another, Wilson

suggested a weighted sum of control variables:

Cj( 3 )(t) = Z wjiCi(l)(t) , (2.127)I] ieKj

where the weights wji are arbitrarily selected by the

simulator. This control variable may be useful in

reducing the total number of control coefficients which

need to be estimated for large networks. It can be

shown that

Cj(3) (t) N (0, Z wj1 2 ) .(2.128)

The asymptotic stability of these standardized work

variables allow the simulator to apply either poststra-

tified sampling techniques or control variate analysis

in conjunction with regenerative or replication

* analysis.

Wilson was able to obtain variance reductions

ranging from 30% to 90t in a variety of networks when
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these standardized control variables were applied to the

numerator of.classical regenerative ratio estimators.

S At the same time, however, he encountered significant

estimator bias and underestimation of the variance

resulting in loss of confidence interval coverage.

These difficulties are present in controlled regenera-

tive analysis regardless of the controls selected.

Wilson found that batching the cycles resulted in

improved coverage while still giving large variance

reductions. In addition, he provided a procedure to

determine a sampling size large enough to guarantee

adequate coverage.

I

I . : , , : :. :., . . ... ~ ~ !i :i-- .. .. ..7 : .. .. . ...



CHAPTER III

PROCEDURES FOR IMPROVING SIAS AND CONI'IDENCE INTERVAL

COVERAGE PROBLEMS IN CONTROLLED REGENERATIVE ANALYSIS

This chapter presents an analysis of the

problems encountered using control variables in the

numerator of regenerative-type ratio estimators. Two

types of control variables appear in the literature

[LAVE79J: (i) a variable which is an estimator of a

known quantity defined with respect to a second stochas-

tic system where the known quantity is an approximation

to the response variable of interest; (ii) a variable

that is an estimator of a known quantity which i;

defined by known parameters of the system being -.. .octly

simulated. We have restricted our research to the

second, or concomitant, control variables. A class of

controls is selected and a technique is developed that

improves the performance of those control variables.

In addition, this chapter includes a theoretical

development for a multivariate test for normality.

* Tests which have been proposed in other research are

discussed to indicate the motivation for developing

another technique.

53
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3.1 Concomitant Control Variates

3.1.1 Selection of Controls

A wide variety of control variables have been

proposed in past research. In choosing a class of

£, control variables, it is necessary to establish some
S

criteria for comparison. In using any variance reduc-

tion technique, ease of implementation is highly impor-

tant. Methods requiring less computation for the

machine and/or the simulator are preferable. It is also

desirable to find controls which are effective for a

variety of experimental systems. Por these reasons,

only concomitant (or internal) control variables were

considered for use in this research. Lavenberg et al.

t [LAVE78J offered an effective set of controls for closed

queueing systems with the work variables they proposed.

While these controls are easily implemented, they are

asymptotically unstable and they cannot be extended to

open or mixed systems [WILS79I.

Lavenberg et al. [LAVE79] examined multiple

control variables applied to the numerator of a regener-

ative ratio estimator. These controls were applicable

to both open and closed systems. These variables

• yielded substantial variance reductions in the models to

which they were applied. However, their controls
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produced a significant degradation in confidence

interval coverage.

Iglehart and Lewis [IGLE79] proposed another
class of controls which uses a recursive relationship

for successive waiting times that is only applicable to

the GI/G/s queue. While their controls are effective,

derivation of the expected values of these variables

presents a formidable task.

Wilson (WILS791 offered yet another type of

concomitant control variable. The only restrictions he

levied on the type of systems to be considered were that

they possess finite expected cycle length and finite

expected visit counts per cycle at each station. His

controls performed effectively, but he did encounter

some loss of confidence interval coverage. This loss

was not, in general, as large as that experienced by

Lavenberg et al. [LAVE79] under their complete dependent

estimation scheme.

With this collection of choices of concomitant

control variables, we selected Wilson's Ostandardized
9

service-time variates" to use in our research. While

these controls produced large efficiency increases when

9applied to the numerator of a regenerative ratio estima-

tor, they did not perform as well when applied to the
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denominator of such ratios. For this reason, we propose

the use of a *standardized flow variate" to control the
I

*denominator. For example, if customers move froumsta-

tion 1 to station 2 with probability P12, or elsewhere

* with probability q12 
= 1 - P12, then each branching

operation may be regarded as a Bernoulli trial with mean

P12 and variance Pl2ql2 (here station 2 is regarded as

a *success'.)

Define

h(j,t) number of customers which arrive at

branch j in the simulated time period

[o,t] (3.1)

Ik(j) the indicator function for a "success"

at branch j for customer k (3.2)

pj probability of a "success" at

branch j (3.3)

qIj 1 - pj (3.4)

T Thus, rk(j) has mean j = pi and variance c02  pjqj.

1 The "standardized flow variate" in defined to be

*

Dj(t) * thl j,t)} - I- aj (3.5)
k-1
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This variable is of the same form as Wilson's

"standardized service-time variate"

g(j,t)
C.(t) a {g(j,t)14 ~ ()-~}/~

k-l 36

which was defined in Chapter 2.

3.1.2 Theoretical Development of the Joint Distribution
of Standaradized Variables

Suppose we have a regenerative system with QC

stations and QD branching points. Thus, we may

construct QC controls of the form (3.6) and QD controls

of the form (3.5).

Let

Q QC +QD (3.7)

a(j,t g(j,t) ,I<j I QC

h(j - QC,t) O C + 1 < j Q C + QD
(3.8)

Uk(J) Yk- 1JJ J I C j C

k( i QC) ,QC + 1 < j j C + OD
(3.9)

Thus the jth standardized control may be expressed as

Aj~t) a~jaE(jkt)

_ _ _ _ _ _ _ _ _ _
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and the Q-dimensional control vector is

, ~A(t) - (Cl(t),., COC(t), Dl(t), .. DQD(t)]T °

- [Al(t) , ., AQ(t)]T .(3.11)

*We wish to show that A(t) converges in distribution to a

multinormal distribution

A(t) NQ0(0, E) (3.12)

with null mean vector and a correlation-type covariance

matrix Z . Relation (3.12) will provide a theoretical

foundation for applying multinormal regression theory to

the study of controlled ratio estimators.

We begin with the observation that [RA073]

Z - No( ux, Z)

<=> bTZ - N(bTjz, bT _rzb) for all be RQ . (3.13)

We have assumed that our regenerative queueing system

has a finite non-zero asymptotic sampling rate

a j lim a(J,t)/t a.s. (3.14)
t

for the process associated with control J, I < 1 < Q.

7 .7- -



Def ine the partial sius

n
*Sn(J) E {Uk(j) -J lii j ,1 <J Q (3.15)

k-i

and let

Gt]t E greatest integer in mjt, 1 < j i Q
(3.16)

(The use of brackets to denote the greatest integer

function is limited to this section only.) Note that

for any t, the variates tSfajtl (j) :1< j 1 QI are

mutually independent and

Zj (t) Sf ajti(i)/[ cjtJ' t N(O, 1) (3.17)

by the central limit theorem. Let

Z(t) - LZJ(t), ***, ZQ(t)IT .(3.18)

Define the characteristic functions

41

*kt(u) E~exp( iuZk(t)} J (3.19)

(Note that in this section only# we reserve the symbol i

to denote -l.) For a fixed i'n RQ we have
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*t(u) -Ejexp (iUbTZ(t))

I *kt(ubk) (.0

since the jzk(t)l variates are independent. in view

of (3.17), the continuity theorem for characteristic

functions [NEUT73) implies that

urn kt~) -exp {-u2/2) for all u . (3.21)

Combining (3.20) and (3.21), we have

lrn *t(u) = ex ( u/)bk }(3.22)

which is the characteristic function for a normal

Q 2
variate with mean zero and variance E bk . Again

k-1

invoking the continuity theorem, we have

bTZ(t) -l T for all be RQ; Z - NQ(O, Q) (3.23)

9 ~where IQ is the 0 x Q identit matrix To prov (31)

consider the diation formula* for A Mt



61

Sa(j, t) S1  I jttl - E a itl

) Sa(it)-[ ji(. (3.24)

lim {E o~jtl/a(itt) }a] 1 < j (3.25)

In view of (3.17) we have

Wit) ait 11 Ii -1t P 0(3.26)

by Slutsky's theorem (BICK771. Wilson(WILS791 proved

that

Vj(t) { a ,t) I [~ t (%JtJl 14

C cjti ) a(j,t)) (3.27)

If we define the random vectors

* then relations (3.26) and (3.27) together with Slutaky's

theorem imply
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P P
bTW(t) -. , bTV(t) - 0 for all b RQ- (3.28)

* Now the dissection formula (3.24) may be expressed as

At) -Z(t) + W(t) + V ;

and combining this with (3.23) and (3.28), we have

bTA(t) .bT3 for all beRQ, Z - NQ(0, IQ). (3.29)

Proposition 2c.4 (xi) of [RA073] finally implies

A(t) - NQ(O, IQ)

3.2 An Examination of Bias and Confidence Interval

Coverage

Previous research in the area of controlled

regenerative analysis has shown that large variance

reductions may be achieved through the use of con-

co itant control variables applied to the numerator of a

ratio estimator. Serious problems have, however, been

encountered in their use. A significant level of

*relative bias seems to be inherent in the top-controlled

estimator (WILS79]. Additionally, it appears that the

confidence intervals obtained frequently fail to provide

proper coverage probabilities (LAVE79, WILS791.
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3.2.1 Background.

We assume that the queueing system to be studied

* possesses the regenerative property, that the IID cycle

lengths (ck, k > I satisfy

* 0 < E[ Ik] < (3.30)

and that Xk(i), the number of customers served at sta-

tion i during cycle k, satisfies

0 < E[Xk(i)] < - for all i. (3.31)

These are relatively mild constraints upon the allowable

queueing systems.

In top-controlled regeneration analysis,

response variables Y and X and a vector of standardized

control variables C with a known expectation of Pc 2
are collected for each of the n simulated tours. The

regenerative ratio r E uy/ ox is then estimated by

r() (i- TC) /X (3.32)

where Y, X, and C are the sample means over the n
cycles. An approximation to the variance of r( 8 ) for

large samples is [IGLE791

V[(.§ )J [l/(n P2 • V[Y - rI - 0 TC). (3.33)z

-. ...- ........ .. ...I ' | "
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The variance of r(O) is minimized with the optimal

control coefficient vector

00 a -l a(Y - rX, C) ,(3.34)

where E is the covariance matrix of C and a(Y -rX, C)

I is the column vector

e(Y -rX, ) a ov(Y-*rX, C1 ) (.5I a(Y - rX, C)Y -: rX, CQ)] (.5

I The optimal control coefficient 00 is estimated by

Ib - ZE-l a(Y - rX, C) (3.36)

using the corresponding sample covariaraces from the n

observed cycles. The sample variance estimator for r(b)

I is given by

V~r(b)1 - {/(n.(n-l).Z2]j Z ny &il4XjITjIJ)1
Ji (3.37)

where ri Y/X. Now r"(b) is asymptotically normal

4 [LAVE791, and therefore a 100 (1 - a)% confidence

interval for r is given by

2( 1 ± oL/2 2 (*r(b)3 1 (3.38)
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3.2.2 Theoretical Examination of Bias in the Top-
Controlled Estimator

* In order to examine the bias present in r(b),

*the top-controlled estimate of r, let us first discuss

bias as related to the classical ratio estimator

ri- Y/X (3. 39)

taken over the same n cycles. Let

rl E~r1] (3.40)

*The covariance between ri and X is given by

Cov(r~l,X) =E~rl - X1 - E(rlj - E(XI

- E((Y/X) 7 - rj Ux

IS ly - rj. ux~ (3.41)

This gives us the relation

(1/ lax) * Cov(rl, Uly! lAx -

r - rl(3.42)

* Thus, the bias in ̂rl is given~ by

B(rl) rl r a-Cov(rl, X)/ lux . (3.43)
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which is of the same form as (3.41). Through a similar

argument we obtain

B (i(b)] I R2 I " SE r(b)J • SE [I / x5,(3.51)

where R2 is the coefficient of correlation for r(b) and

X. This yields the bound

I sEr^(b) I /SE[r-(b)] < CV¢i) ( 3.52)

3.2.3 A Technique for Controlling Bias

Research in the area of concomitant control

variables has been confined to the application of

controls to the numerator of a ratio. Equations (3.47)

and (3.52) reveal that the relative bias present in the

classical and top-controlled regenerative ratios primar-

ily relates not to the numerator but rather the denomi-

nator of the ratio of interest. We have, therefore,

chosen to turn our attention to the development of a

strategy pertinent to the denominator which would

improve the efficiency of a queueing simulation in the:1 same manner as the top-controlled method without the
bias penalty.

A logical path of exploration is to consider

* applying controls to the denominator. Let

-1
1 l . . .
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r(6 s?(! 6 5 (3.51)

where indicates the sample mean of a vector of stan-

d ardized control variables D with known expectation

D 0. Applying the same argument used earlier we

have

B~r( 6 Covtr( 6 ),Y -D/U

-{R3 - SE(r( 6)] * SEiI- 8?]J / U
(3.54)

where R3 is the coefficient of correlation between r( 6 )

and X - ST5. Thus, a bound on the relative bias is

given by

* Bsis( 6 )J /SE(( 6 )]

I <
SE[X - 6TD]/(n2~ ux ) ( (3.55)

As will be seen in Chapter V, the relative bias of a

ratio estimator is a major cause of coverage degradation
I!

in the associated confidence interval estimator. (See

* also (COCH771, pp. 12-16.) This last expression implies

a that applying controls to the bottom of a ratio estima-

tor should reduce bias if we are able to find controls

which are strongly correlated with X. The optimal
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control coefficient vector that minimizes the bound

(3.55) on the relative bias of r( 6 ) is given by
4

o r- (x, D) , (3.56)~D

where ED denotes the covariance matrix of the random

vector D and a(X, D) denotes the column vector of

covariances between X and each component of D. This

optimal control vector is estimated by

d = - &(X, D) (3.57)
- ~D -

where the entries of ZD and (X, D) are the

corresponding sample covariances computed over all

observed tours. In addition, care must be taken that

application of those controls does not increase the

correlation between the rat.o estimator and its

denominator.

3.2.4 A Two-Stage Procedure for Controlling Bias and

Variance

In practice, application of controls to the

denominator produced strong results in terms of bias

correction. These controls did, however, simultaneously

result in large variance increases. This led us to

attempt a two-stage procedure. Since application of

Ii
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controls to the numerator gives large variance reduc-

tions, we propose that the simulator should apply

appropriate controls first in the denominator to reduce

the bias of the regenerative estimator; then he should

apply a different set of controls to the numerator of

the bottom-controlled ratio to obtain a variance

reduction.

The new ratio estimator offered by this research

is

r( 8,Y ) ( BMrC)/( - Y ) (3.58)

where C and D are disjoint sets of standardized

controls. The variance of this estimator is given by

V[l( S,y )] Z V(Y - BTC - r(X - yTD)]/(n U2).

(3.59)

We first wish to control the denominator to obtain a

reduction in bias. This requires a minimization of

V(X - yTD). The optimal control coefficient is there-

fore estimated by

e d (X, D) (3.60)
tD

Let
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Xj* Xj - TDj 1 < i < n .(3.61)

E We may now express our ratio estimator as

r(8 d) -(Y - VIC1P~ (3.62)

4
* which has approximate variance

V(r^( 8, d)] - VU(Y - $TC) - rX*1/n V 2). (3.63)

The vector So which minimizes (3.63) is estimated by

b = 21 (y - rlX*, C) .(3.64)

The resulting sample variance is given by

tV[r(b, d)] ) 1/tn *(n - 1) *(i - dTD3) 21 I

n
*Z (yj -bT(Cj -) -; (,Xj IT(Dj -~}2

J-1 (3. 65)

we form an approximate 100 (1 - a )% confidence interval

for r by

rb, ld)/ + ~ (~b Z)l (3.66)

The relative bias structure of the two-stage

controlled ratio estimator reveals much information as

to the settings in which the procedure will be
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beneficial. For the first time, an explicit expression

for bias is given which will allow the simulator to

determine after a short preliminary run whether or not

the controla's he selects will result in bias reduction.

The bias of our estimate is defined to be

-- Cov[21b, d), T - / I x. (3.67)

Now,

CII
R 4 *SE(i(b, d)] *SE(X'] (3.68)

where R4 is the coefficient of correlation betweenIA
r(b, d) and V. Therefore, the measure of relative bias

is

:A~(b, d)] I/SEr(b, d)]

R 4 I*SE[X*]/(nV 1j.) * (3.69)

Using Lavenberg's ILAVE781 formula for loss of

efficiency due to the estimation of the control coef-

* ficients over n regenerative cycles, we obtain
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V[1'] V[X -TD

*a 2 *(1 - R2) *[(n -2)/(n -OD -2)).,

x (3.,0)

where we assume D to be a QD dimensional vector and

* R5 is the coefficient of multiple correlation between X

and D. We therefore obtain the explicit expression for

relative bias

{02 Rk4 (1-R~P# 2 (2/nD)~~/ntix

(3.71)

This last expression gives several clues for selecting

controls for the denominator. Due to the prenae of

the loss factor (n - 2)/(n - QD - 2), keeping the number

of bottom controls to a minimum is desirable. in addi-

tion, a strong correlation between X and D is prefer-

able, but it should be accompanied by a weak correlation

between r(b, d) and X.

To gain insight into the behavior of the

*variance of the two-stage estimator, we will now develop

an explicit exprassion, for that quantity. This

* expression will again give the simulator informatiou

about the value of his controls.
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Let

Y - -i bTCi, 1 < i < n (.2

Now,

*V[r(b, d)) ( 1/(n i'X2)1 VY I -( bTC)

-r(X -dTD)] (3.73)

and, in terms of Y' =- Y -bTC and X* =X- dTD, we

havet

VE(Y -bTC) - r(X - dTD)j

- V[Y* rX*I

- VEY*] + r2V[X'1 2r Cov(Y*# X*)

,02 (1 R- R) LT + r 2 0r 2 ( - R 2)L9

-2r(R 7 -c a(1 - R 2) 1 Lr3T.A a

* 1 2 R)~' (3.74)

where R,6 and R7 respectively denote the correlation

coefficients between Y and C, and between Y* an *.

Moreor, we have the lose ce fficients for the top sad

bottom of it'~, d):
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I- (n- 2)/(n - OC- 2)

* and

LB - (n - 2)/(n - QD - 2)

equation (3.74) reveals that there are several

opportunities for variance reduction in the two-stage

estimator. Strong correlations between Y and C and

X and D will reduce the overall variance. In addition,

a strong positive correlation between Y* and X* will

result in variance reduction, but a variance increase

will be realized if they are negatively correlated.

We will point out here that results in S 3.1 are

the first quantification of the bias found in these

controlled ratio estimators. Implications for the

practitioner will be summarized in Chapter V.

3.3 Development of a Test for Multivariate Normality

The class of control variates selected for use

in this research requires that they be from a multi-

variate normal distribution. This required the batching

of observations over a number of cycles to induce a

central-limit effect. In order to reduce the total

number of simulated cycles required, we wished to use a
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normality test which would indicate the minimum required

batching size.

3.3.1 Analysis of Previously Proposed Tests

Hlensler et al. [HENS77J developed a test for

multivariate normality requiring successive orthogonal

transformations of the observations. They base their

test on the following theorem and corollary:

Theorem. Let Xl C2, ..., 4n be independent k-

variate random variables with covariance matrix

*Let A - (aij), i, j -1..,n, be an n x n

orthogonal matrix over Rl such that at least two

elements in the first row are not zero. Denote

i n ,. .n j - 1, #.., k and let

where yiT .(yil, ..., yik), i - 1, ... , n.

Then Y-2. X3' .... Yn are (n - 1) iid k-variate

normal, N(O, Z ), random variables if and only

if Xl, ... , Xn are such that Xi is k-variate

normal, N(aljc(ylE) , n.

Collary. Let Xl, *.., Xn be a random sample

from a k-variat, distribution with mean vector

---------------
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Sand covariance matrix .Define an (n -1)

by ni matrix 8 a (bij) by

1 - b, i -J, I-1, 2, ..

bij -- b, £ jr it j - 1, 2, **or n -1

*-(1 + VAi)b,i -1, ... , n- 1; j -n

where b - 1/[n + V n]. Complete the matrix B to

an n by n orthogonal matrix C. Define n random

variables Y1, ..., Yn by

Y a CX

where Y a(Yij)and X (Xij), i 1 1. .... ,

1, o ., k. Then Yl, ... , - 1 are iid

N(O, Z )if and only if X1 , *09., Xn are iid

N(U, E )

This corollary allows them to test for N(O, Z ) rather

than testing for N( Pi, E

To test for k-variate normality of a random

sample of size n, the corollary must first be employed

* to reduce the problem to one of testing for a sample of

size n-i1, yiT - (yil, **f Yik)' im - , ... , n-i1,

from a N(O, r )distribution. Hensler at al. then
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propose testing the last component X(k)T = (Xik,

Xn.l,k) for univariate normality with mean 0 and

variance Okk 2 . Next, they test the conditional (k - 1)

variate normality of the first k - 1 components given

the last. They form an orthogonal matrix A whose first

row is

Xlk X2k X(n- 1)k
a 5 5

where

n-I
2 E Xik 2

Let

W AX

By their theorem, this reduces the problem to testing W

for (k - l)-variate normality. The procedure is

repeated testing the last component for univariate nor-

mality and forming a new orthogonal transformation.

This test presents several problems. First, it

omits a great deal information. Univariate tests for
normality are performed on k independent ample sizes of

n - 1, n - 2, ... , n - k, so that [k(k + 1)/21 obser-

vations are lost. Second, the practicality of forming
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several orthogonal transformations is questionable.

Given large sample sizes, this could prove extremely

expensive. Third, the choice of the test for univariate

normality is left to the tester. Hensler et al. offer

no information on the power of this test but merely

state that it will do no better than the univariate test

selected.

Cox and Small (COX781 proposed goodness of fit

tests for multivariate normality based upon tests of

Ilinearity of regression. They proposed both coordinate-

dependent and invariate approaches. Due to the theoret-

ical power and value of invariant methods in multi-

variate analysis, we only present that particular test.

The basic idea of their method is to find the pair of

variables which are linear combinations of the original

va, ,-oles that will result in maximum curvature when one

is regressed on the other. The amount of that curvature

is taken as the test statistic.

Suppose Y (YIl, ... , Yv)T is a standardized

v-dimensional variate with mean 0 and covariance matrix

E . For the higher moments, write for r, s, t, u - 1,

rs.t Vr

E[yrYsYt ] -p(r,s,t), E[Yr'.sytyu] " (r,s,tru).



Two linear combinations X - aTY and W O bTY are formed

with aT Za = bT Eb - 1 so that X and W have mean zero

and variance one.

Let Y - YXW be the least squares regression

coefficient of X on W2, adjusting for the linear

*regression of X on W. Using the orthogonalized form

X - aW+ y [W2 -WE(W 3 ] - 11 + e

Cox and Small obtained the coefficient

E[X - W2 ] - E[W 3] E[X • W)
YXW
P_ = E[W 41 - 1 - (E[W 3 ])2

A measure of quadratic contribution to the regression

is

nXW = YXW/ {E[W 4 ] 1 - E2 [W3 ]} V

Note that nXW2 is the proportion of total variance of X

accounted for by the quadratic component of the

regression.

To find the maximum possible curvature, the

numerator of yXW is maximized with respect to a fixed

b. In terms of a and b, this gives the non-linear

' problem of
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maximize C = E arbsbt e(r, s, t)

- (E brbsbt 1(r, s, t)) ( (E arbs ars)

subject to

-Earas Ors E brbs rs 1.

Consider C - 32A arasa rs where X is a Lagrange

multiplier, and differentiate with respect to au to give

for u = 1, ... , V at a stationary point,

Z bsbt P(u, a, t)

- ~~Ebt aut)( Ebrbsbt M(r, a, t)) - E Zat aut

=0

For the axism value of C, € *, they find that

au - (IEbrbs v(r, s, t) atu

- bu Erbsbt p(r, a, t)]/ C*

where OiJ is the ijth element of E -1, and that n 02 ,

the supremum of nXW over a for fixed b is

0

* Ebrbsbtbu e(r,sp) u(tu,q)a Pq - [brbsbt i(rlst)1

Sbrbsbtbu t(r,s,t,u) - I - [ brbobt ] (rS,t)12

S ,



62

This last expression must be maximized using the sample

values of the higher moments. The authors suggest that,

after locating an initial value to, a "hill-climbing"

algorithm be applied. The value of log n0
2 is used as

* a test statistic. This statistic is tested for

normality.

The test proposed by Cox and Small raises

several questions. Evaluating n0
2 requires the solu-

tion of a highly non-linear expression. They point out

the potential for reaching a local rather than global

maximum. They state that the effort involved in evalu-
ating no2 is of order v4. This significantly reduces

the size of the matrix Y which may be considered.

Another problem for the user is that an inspection of

scatter diagrams for the derived variables is required.

This means that after no2 is derived, the practitioner

must still make a value judgement. No indications of

the power of this test are offered.

Small [SMAL80] suggested testing the skewness

* and kurtosis of the marginal distributions of a multi-

variate distribution. Suppose the random variable to be

tested is p-dimensional and that a random sample of

size n has been taken for this variate. Let X1 be tb*

vector of sample marginal coefficients of skewne" wLh
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covariance matrix Vl, and X2 be the vector of sample

marginal coefficients of kurtosis with covariance matrix

V.Small then applies Johnson's Su transformation

(JO!1N491 component-wise to these marginal sample

statistics to obtain the vectors

yi 619iinh"1 (XCi/ X)

and

Y'2 Y1 +. 628inh1l[(X2 - l)/ X21

where 61t 62, Y2, and C are found using the first

four moments of Xl and X2 and tables given by Johnson

(JOflN65J * The components of yi and y'2 have distribu-

tions that are approximately standard normal, so that

their covariance matrices U1 and U2 have main diagonal

elements of unity. if the theoretical correlation

between the ith and jth variates of the original data is

Pij, the off-diagonakl elements of Ul and U2 are given

by an
by , ad pjrespectively. The test statistics

Q1* yl'.l and 02 -y 2TU2-1Y2

eachaenapozatXp distribution ndr the w~il

hypothes is. B ince the skewness and kartois ..ef-

ficients are uncorrelated and neatly ind~pea4*fta to the

. .. ...
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univariate case, Qi and Q2 are nearly independent and

the significance level for the tests may be determined

accordingly. Of course when the correlation's (pijI are

unknown, they must be estimated from the sample data.

Small's test offers an ease of calculation not

seen in earlier tests. However, it is based upon the

necessary, though not sufficient, condition that the

marginal distributions must be univariate normal for a

multivariate distribution to be normal. He states that

is is possible for a marked departure from multivariate

normality to be accompanied by apparent normality in the

marginals. Results of this test are therefore

inconclusive.

Hawkins [HAWK81] proposed simultaneously testing

for multivariate normality and homoscedasticity. He

employed the Anderson-Darling statistic to test for

these properties.

Let Xij, i a l, ..., g, j o 1, ... , ni be a vec-

tor of p components. Hawkins proposed to test for

. i N 9p E i)

where Np indicates a p-variate normal. Let t. and

* Si respectively denote the sample mean vector and

variance matrix of the sample {Xijt 1 < J ni }. Wt

*1 - -
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ands

9

S- E (n±-l)Si/(N-g)

Define

Vij (2Xij - !j. )TS4l(Xij-

If Xj.* and S* respectively denote the sample mean

vector for group i and the pooled covariance matrix

obtained by deleting Xij from the sample, Hawkins shows

that

T2 - (nj - )(Xij - 3fi.*)T$*l1(4ij - j*)n

follows a Hotellings T2 distribution and therefore

Fii - (N - g - p)T2/[p(N - g - 1)1

has an F distribution with p and N - g - p degrees of

freedom. Invoking the binomial inversion theorem

[PRUS72J, Hawkins indicates that

'ij a [(N-9-p)niVijl/ (p[(ni-l)(M-9) -niVjil

The statistic



4Aij - P(P > Fj

is distributed as a uniform (0, 1) variate under the

null hypothesis. The following are the proposed test

statistics. For all i, let Aj(l).j Aj(2). ..

Ai(nj) be the order statistics for the Aij. The

Anderson-Darling test statistic is

ni
Wj nj - nf' r (2j - l)(logAj(j) +

log(l - Ai(ni - j + 1))]-

The Wils may asymptotically be expressed as

Wi a Zjjk2/[k(k +. 1)]'I k-l
ni

where Zik 1 (2k + Uln] E Pk (2Ai(j) -1
jail

and Pk is a kth order orthogonal polynomial. To test

for nonnormality, the V1 and first few Sij must be com-

A puted. Nonnormality is indicated if the Zijs are near

zero and the *i's are large.

Eavkin's test is# unfortunately, a qualitative,

rather than quantitative one. There are no tabulated

critical values for his test statistic.

'p-'-M
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Computationally, obtaining the Wj.'s and Zijls is a

forbidding task. In addition, it remains unclear an to

how many of the Zijis must be computed and ixamined.

3.3.2 Motivation for the Proposed Test

Shapiro and Wilk ISHAP65SI concentrated their

efforts on-. eveloping a test for univariate normality

wnhich wouldo be both scale and origin invariant. Their

work was based upon an attempt to formalize the depar-

tures from atatistical linearity of pribability plots.

Lt tx 1 <Sx 2 <.. -'- Xn denote the order statistics for

random sample of size n from a standard normal

distribution with

E(xi] -mi

and

COv(xir xj - vij

If YT a yl, .. yn) is a vector of order statistics

a * for a random ss~l. of size n from a fixed but unknown
4 distribution, then we wish to test whether this distri-

bution is normal. If the underlying population is

normal# then ye may write

Aj



yi- + axi, <. i <n

Let AT *(m 1 , *-. mn) and V - (vij). For symmetric

distributions, the unbiased least-squares estimates for

V and a are

[1/ni E Yi

i-i

and

a - (Tv-lyI/[MTv-lmI

The Shapiro-Wilk test statistic is

n n
W aiyi12/ E (yi - ')

where

AT - Cm lj/[.TV-lV-l], (3.75)

To compute W for a random sample of sit& n -2(1)50,

coefficients (ail are located in tables provided by

* Shapiro and Wilk. (Notes i(j)k denotes the integers i,

i+J, i+2j..., ie*j-k.i They also provide percentage

* points for V based upon Johnson's (30KW49) So curves.

Shapiro and Wilk compared the power of the

V-test with that of several standard testa of normality:
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chi-squared, third and fourth moments, Kolmogorov-

Smirnov, Cramer-Von Mises, a weighted Cramer-Von Mises

using the Anderson-Darling method, Durbin's method, and

a range/standard deviation test. Shapiro, Wilk, and

*Chen [SHAP681 also conducted a comparative study on the

powers of several tests for univariate normality. Both

studies concluded that the Shapiro-Wilk test has super-

ior empirical power over a wide range of alternative

nonnormal distributions. This fact, coupled with its

ease of calculation, mak-s W the clear choice for uni-

variate testing of normality.

Subsequent to the first appearance of the

Shapiro-Wilk test, two similar tests have been sug-

gested. Tables of critical values {W (n)} and coef-

ficients (ai(n)} for the Shapiro-Wilk test have only

been provided for samples up to size 50. Shapiro and

Francia (SHAP72] offered the following test statistic:

n n
W' [ Z biyil2/ Z [yi -y2

1-1 i-l

where

bT (bl, b2, bn)- mT/[mTmI4.
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Values for m have been determined for sample sizes of

n - 2(1)100(25)300(50)400, and the null distribution of

W' has been approximated. Weisberg and Bingham [WEIS75]

suggested using

mi = -1([i - 3/81/[n + 1/4])

where 0-1 (p) is the inverse of the standard normal at

p, as an approximation for m in the W' statistic. The

I W' statistic has the computational advantage of no

storage of constants for machine use. Both W' and W'

I have approximately the same power as W (SHAP72, WEIS75].

3.3.3 A Multivariate Normality Test

I Due to the superior power of the Shapiro-Wilk

test, we developed a multivariate version of this test

based on the union-intersection principle (MORR76].

Let X be a p-dimensional column vector so that

{Xi : 1 < i < n } forms a random sample of size n from

a p-variate distribution. We wish to test the

hypothesis that

V o X - Np( lx, Z x)

for some mean vector 1ux and dispersion matrix x,

against the alternative



First ye form an arbitrary linear combination aft, Vbher*

A. c0T is a nonnull p-dimension real vector. Therefore cV

is univariate and we may test the univariate hypothesis

:6c cTX - N(CT Ux CT ZO .(3.76)

against its alternative

31(s) 1 CTX- N(CT x ST Exg)

Let

Yj Jth order statistic of { 'Xi :1 < i < n
(3777)

The univariate Shapiro-Wilk statistic for Y is

n n
W(C) E C Eajyj]2/[ E (Yj - Y)2 (3.74)

The acceptance region for 11o(c) is

wbOeM. so (a) is the critical value for tbe -talveriate

tewt. um so is tawe it aiw oly it- sv) is trae -for

allI "Duall .0 thus we vilIi acet to it sad m NLY
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in RP. Thus, the acceptance region for Ho is given by

the intersection
t

• ' t"[W(c) > W O(n)] .(3.80)

This intersection is equivalent to the condition
&

W* min W(c) > W (n) (3.81)
c

When the null hypothesis is true, W* will have a par-

ticular CDF. From this, critical values for Wa (p, n)

could be calculated and thus, for a test of level a , we

accept Ho if

W* > W 8 (p, n) . (3.82)

Now locating W* is equivalent to solving each of the

following quadratic programming problems:

QP(a ) : Maximize z yTy

subject to

p lTy = 0

aTY - 1

i- cTX a(i) - 0, 1 < i < nI
I ' ... .l- " ..." .... ". ... i. . .... .... '.. ..../ i.. .. ... .. .... .. .
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Y -yl (Y1,.. YnJ9 Rn, c- Cc,. foot cple Rp
4

where a Mi is the image of i under the permutation a

of the integers 1, ... , n and a is given by equation

(3.75). Thus, QP( a) is a problem in n + p unrestricted

variables with 2n + 1 linear constraints, where z is a

convex function and the constraints form a convex solu-

tion space. There are ni problems of the form QP( a)

corresponding to each possible permutation a. we pro-
pose the following heuristic to identify and solve the

appropriate problem QP( a). Let

n
A- £(X~-Xj - X) T . (3.83)

For m a 1, ... , n, we compute the statistics

Uj (Xm - R)TAl1(Xj - 7) , .< J < n (3.84)

* and let U(j), .. ,Un indicate the ordered values. Now

we evaluate

n
C E ajU(j)1 2

Wan < m < n * (3.85)
(Xm - %)Tk-l(X3
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Each value of m is associated with a particular

permutation a defined by the relation

U(j) - U a(j) , 1 < j _j n

The value of m minimizing (3.85) thus identifies the

permutation ao and the problem QP( 0o) which should be

solved. The final test statistic is given by

W*=(aTYo)/(Y0TY0 ) * /(YoTyo) (3.86)

where Yo is the optimal solution vector to the

quadrataic program QP( ao). We must note that it has

not been established that the use of Wm will guarantee

that the proper permutation is selected. A rigorous

demonstration of the validity of this procedure is the

subject of ongoing research. Once this has been

accomplished, the null distributions of the resulting

test statistic (3.86) for various values of n and p can

be estimated by applying Johnson's SS system of curves

(JOHN49] to simulation-generated empirical

distributions.

*



CHAPTER IV

EXPERIMENTAL PROCEDURE

To gain insight into the problems of relative

*bias and variance reduction and to determine the effec-

tiveness of the two-stage control procedure, four

queueing systems were selected for simulation testing.

This chapter presents a description of these models, a

discussion of available performance measures, and an

analysis of the validation procedure.

4.1 Selection of Experimental Systems

Queueing models have become a standard experi-

mental vehicle for controlled simulation. These include

open, closed, and mixed systems. In an open system,

customers arrive to the system, are serviced at one or

more stations, and depart. An example of an open system

is a retail center where customers enter, make a

purchase, and leave. In a closed system, a fixed number

of customers remain within the system during its opera-

tion. An on-line computer with a fixed number of ter-

minals is such a system. Mixed systems contain both

open and closed classes of customers. An example of

-95-
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this is a computer system with batch (open) input and a

fixed number of on-line (closed) terminals.

The first system selected for analysis was the

M/M/l queue. This system was appealing because of its

*analytical tractability. The system response variables

we examined were the customer's total average time in

system and the steady-state proportion of time that the

server was busy. The second response is hereafter

referred to as the station utilization. This was the

only open queueing system we examined.

The second stochastic model we chose was a

periodic review inventory model. The system was

operated under a stationary (s, S) inventory policy.

Let dn be the demand in period n and Xn be the total

inventory on hand at the beginning of period n. Thus

Xn - dn , dn j Xn - s

X S , otherwise

where s is the reorder point and S is the reorder (or

stock control) level. There are initially Xo = S units

in inventory and a return to this state signals the

beginning of a new regenerative cycle. The response

variables we considered were I, the average number on
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hand, and wi, the long-run proportion of time that

there are i units on hand. Examination of the (s, S)

inventory model permits us to study the behavior of the1control procedures under a different correlation
structure. For a covariance stationary process

{ Xt, t - 1, 2, ...1 define Pi to be the correlation

between Xt and Xt + j. This is given by

pj - Cov(Xt, Xt + j)/ a2 .

In general, the response time variable for all queueing

systems have a similar correlation structure. Figure

4.1 shows the correlation function for system I. For

the (s, S) inventory model the correlations between the4 inventories on hand for various time lags is negative

for odd-numbered lags and positive for even-numbered

ones. The correlation function for this system is shown

in Figure 4.2.

The third system we considered was the central

server model, shown in Figure 4.3. This is frequently

used as a simple model c a multiprogrammed computer

system with service center 1 representing the processor

and the other service centers representing input-output

devices. The system consists of three service centers,

each of which has s i servers, i - 2, 3. The number
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of customers (that is, the level of multiprogramming) is

fixed and is equal to N. Initially all N customers are

at station 1. Service time at station 1 is exponen-

tially distributed with mean ul. With probability

P12, a customer leaving service center 1 immediately

enters service center 2 where he joins a FIFO queue to

await service. Service time at station 2 is iid expo-

nential with mean U2. Alternatively, a customer leav-

ing station 1 enters service center 3 with probability

P13 - 1 - P12 to join a FIFO queque and await service

there. Service times at station 3 are iid exponential

with mean U3. After completion of service at service

centers 2 or 3, the customer returns to center 1. The

response variable examined here was the time between

successive arrivals by a customer to service center 1.

The fourth stochastic model we examined was a

variation of the machine repair model. This system,

shown in Figure 4.4, consists of four queues and a fixed

number of units N. Initially, all N units are at sta-

tion 1 with al units in operation and N - al waiting in

the queue as spares. The time until failure of an

operational unit at station 1 is iid exponential with

*mean -2 Upon failure, a unit is sent for repair.

With probability P12, a major repair is required at
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station 2. With probability P13 1 1 - P12, a minor

repair is needed at station 3. Stations 2 and 3 are

FIFO queues with s2 and s3 repairmen respectively.

Repair times are iid exponential with mean P2 for a

major repair and mean U3 for a minor repair. Following

repair, a unit proceeds to station 4 for inspection on a

FIFO basis by one of the s4 inspectors each having iid

exponential service times with mean U4. A unit will

fail inspection with probablity P43. Should it fail, it

is sent back to station 3 for further repair.

Otherwise, it is returned to station 1 where it joins

* the queue of spares; if there are fewer than sl opera-

tional units, it goes into service immediately. The

response variables examined were the average number of

operational units at station 1; the server utilizations

at stations 2, 3, and 4; and the time required for a

newly-failed unit to reenter station I.

We are able to obtain the desired values of the

* steady-state parameters analytically for all four of

these systems. The method for calculating these is
p

found in 5 4.5.

The first three models presented were used to

*analyze the bias and confidence interval problems which

exist when top-controlled regenerative analysis is used.

.......................................



The fourth, mo4eltWas selected for VaUidstion Of tb* tft

state procedure. Uesults of the .speriM**tattoe aPPeas"

in Chapter V.

4.2 Performance Meaures

* To determine the valute of the two-stage 0e010d

of applying concomitant control variables, some stao-

-l dards of comparison are required. This seCtion cottas

a discuss ion of available parforasa~ce ea0sures MOW'a

presentation of those methods selected for use.

Most perf ormance measures cmpre the ettCteeoY

of direct simulation (subsequently labelled: moth"d @)

to the efficiency of some alternativet procedure

(subsequently labelled method 1) for variatce, veS40214

or confidence interval estimation. lbl* relativ

efficiency factor-of method 1 to msthod 0 my be bsis
upon the cost involved* the gain Or los Of PCASlI40

(accuracy), or the reliability of thet tecnt9.

The cost of a technique, is genertily a

Creflection of the Saat Of *amptatioft reqU*d tat,

* method. womraley mad MAmdeoft 9RUS4-11-11--111 %at

this sheuld be. a **m*u of 010he e*spad W*e time

'tt 1 * 0, It theet t 99PiGSOVAt

laber ati 0/ T i
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as a measure of cost. Moy [M0Y65] suggested using the

computer processing charges, Yi, required to obtain a

fixed-width confidence interval by each technique

i - 0, 1. Moy used as his performance measure the

percentage of original cost saved,

% gain 100 ( Yo - Yl)/ Yo. (4.2)

Both of these methods are difficult to use in practice.

The results obtained depend on the computing machinery

used and the methods by which computing time is charged.

The precision of method i is usually considered

to be inversely proportional to its estimator variance

a 12. Cochran (COCH77] expressed the relative precision

of method 1 to method 0 as

2 2
relative precision = 2l (4.3)

Hammersley and Handscomb (HAMM64] proposed a comparable

measure:

variance ratio a2/0 2  (4.4)

Kish [KISH651 considered using the design effect"

doff 2 (4.5)
1'0"
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This was later described by Lavenberg CLAVE77(l), (II);

78; 791 as the "minimum variance ratio." KleijnenI 0 EKLEI74] suggested using the percentage of the variance

of method 0, ao, that was eliminated using method 1:

2 2)/2))%variance reduction 100l(a 10  a 1
(4.6)

Several researchers [HEID78, LAVE79, IGLE79] have

concentrated on the reduction of the width of the

resulting confidence intervals:

confidence interval reduction A = [tlal]/t 2a 2]
(4.7)

where to and tI are selected critical values of the

distributions relevant to each of the methods. In all
A

of these methods, the sample variances, co and al, are

used when necessary.

For an estimand 8, the accuracy of the

estimator e derived by method i is an expression of

the size of the error i- e [COCH77, HANS53, RAJ681.

The bias

Bi E[ Oil - (4.8)

reflects the systematic component of the error, while

the mean square error
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MSEi E E[I j - )21 - 2 + B12  (4.9)

takes into account bias as well as precision as a

* measure of the overall accuracy of method i. Rao

[RA0691 studied the performance of a variety of ratio

estimators in comparison to the classical ratio estima-

tor, method 0. He used two measures of accuracy for

each alternative estimator:

% relative accuracy for method i = 100.MSEi/MSE0

(4.10)

and

% bias ratio for method i 1 100. Bi I/ /fMSL
(4.11)

Reliability is taken to be a measure cf the

actual coverage probability

Pi - Pr 01 - ti ij < i + ti 1i } (4.12)

of confidence intervals for e that are constructed

using that method [WILS78; LAVE78, 791. Lavenberg et

al. [LAVE79] considered the gain or loss of coverage

achieved by method 1 relative to method 0 under the same

conditions:

coverage gain - l" Pa. (4.13)
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Wilson [WILS78] used a similar measure to compose an

alternative technique but required that the confidence

intervals I'e adjusted to a common width.

Some of the available performance measures

U attempt to combine some of the basic measures into a

single overall figure of merit. Hammersley and

Handscomb (HAMM64] felt that any measure of efficiency

should incorporate cost and precision. They proposed

using a product of their variance and labor ratios to

obtain

-2 2efficiency gain To ( O )/( 1) a (4.14)

Som [SOM73] considered cost and accuracy to be of

significance and offered

relative cost efficiency - ( Y0.MSE0 )/( Yl.MSEl)

(4.15)

as a performance measure. Both of these standards for

efficiency clearly have the same problems associated

with any cost measure.1 vThe selection of performance measures to be

applied in this research was based upon the decision

that the evaluated technique should not disrupt the nor-

mal course of the simulation in any way. Therefore the

I
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alternative methods simply utilize available simulation-

generated data in different manners. Experimentation

revealed that the CPU time required to obtain the simu-

lation data for each collection of experiments greatly

* outweighed the time involved in applying the varlius

sets of control variables. Therefore, any differences

in cost among the various alternatives is overshadowed

by the basic simulation cost. Consequently, cost was

omitted as a criterion for the performance of any

method. Kleijnen's variance reduction percentage (4.6)

was selected because it seems to have become a standard

in simulation experimentation. Although researchers

have used a variety of criteria such as (4.3), (4.4),

and (4.5), they frequently returned to (4.6) in the

discussion of their results. Additionally, for control

variate analysis, the variance reduction percentage cor-

responds to the square of the coefficient of correlation

[LAVE8l]. The bias factor Bi given by (4.8) was also

averaged over several replications of each experiment to

determine the accuracy of the resulting point estimates.

Finally to incorporate the reliability criterion, the

estimated coverage Pi for each variant of controlled

regenerative analysis was computed along with the

coverage gain (4.13).
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4.3 Selection of Experimental Parameters

For each of the stochastic systems selected

for examination, a meta-experiment consisting of 50

independent simulation runs was performed. For each

experiment, a group of regenerative tours was used to

* construct point estimates and confidence interval

estimates for the selected response variables. These

estimates were constructed with and without the use of

control variables. We then averaged our selected per-

formance measures over all of the experiments within the

meta-experiment.

In order to obtain reliable results with the

regnerative method, a fairly large number of tours are

required [LAVE78]. In this research, we used from 500

to 3250 regenerative cycles in each experiment. Wilson

[WILS79J showed that when using top-controlled regenera-

tive analysis, a large relative bias is encountered when

the number of tours used is small (less than 100 tours).

Additionally, it has been found that a large number of

short tours is preferable. For this reason, the regen-

* eration points selected for each of our experimental

systems were those states which occured the most fre-

quently. In addition, for the closed systems, the

number of customers was kept lower to increase the rate
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of regeneration. In order to obtain the convergence to

joint normality of the control variates for these short

tours, we found it necessary to accumulate controls over

a batch, of tours. The method for selecting a minimum

batching size is presented in S 5.3.

For the M/H/l queue, light traffic intensity

results in more frequent regeneration. We therefore

chose an interarrival rate of 1.0 with a service rate of

2.0 for a traffic intensity of 0.5. The regeneration

epochs are defined to be those points in time when an

arriving customer finds the system empty and idle.

Frequency of regeneration in the (s, S)

inventory model is governed primarily by the number of

states and the demand function. To limit the number of

states we lets -3 and 6. The demand in each

period is 0, 1, or 2 each with probability 1/3. Since

asymptotically the choice of a regenerative state has no

effect on the response variables, we are free to choose

any state to begin our cycle [CRAN75(I)]. We found that

Xn -3 occurs most frequently and therefore let Xo - 3

and used it as our regenerative state.

In selecting the experimental parameters for

systems 3 and 4, the same criteria were used. The

regeneration epochs occurred when all of the

I!
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customers/units were at station 1. Other parameters are

given in Tables 4.1 and 4.2.

4.4 Validation Procedure

Analysis of the experimental results requires

the comparison of estimators found through application

of the various methods to the steady-state values of the

response variables. If the true values of the estimands

are known, it is possible to estimate the true coverage

of the nominal 90% confidence intervals derived for

those parameters. Methods for obtaining the analytical

values for the response variables in each of the systems

will be discussed in this section.

4.4.1 Results for the M/M/l Queue

In a basic open queueing process, customers

arrive in accordance with an interarrival process, join

a queue to await service from one of the s servers, and

are served according to some service time distribution.

In the case of the M/M/1 queue, customers arrive accord-

ing to a Poisson process with arrival rate X , enter a

FIFO queue, and await service from one server whose

service times are Lid exponential with rate U , The

utilization factor (HILLSO) for such a system is given

by
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Table 4. 1

Service Center Parameters for Systems 3 and 4

Number Mean Number

System of units Service Times of Servers

N )Al11~2 M13 IA4 81 82 83 54

3 8 1.0 .556 5.0 - 1 1 1 1

4 7 10.0 1.5 1.0 .5 5 1 .1 1

Table 4.2

Branching Probabilities for Systems 3 and 4

System P12 P13 P43 P41

3 .9 .1 -

4 .25 .75 .1.9
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P X X/i'. (4.15)

To obtain the steady-state time in system, we employ

Little's formula [LITT61 to obtain

W - L/\ = P/[(l - P ) Al. (4.16)

Thus, for our particular system, p = 0.5 and W - 1.0.

4.4.2 Results for (a, S) Inventory Models

The results for (s, S) models are presented here

j in the context of the specific model selected. System 2

is a Markov chain with four states [WAGN69]. If Pij is

the probability that the inventory level will change

from i to j, then the transition matrix is given by

(3) (4) (5) (6)

-1/3 0 0 2/3]

P.1-/3 1/3 0 1/31. (4.17)

1/3 1/3 1/3 0

L 0 1/3 1/3 1/3,

The steady-state probability 7Ti that the system is in

4 *state i is given by the solution to the equations

f l (4.18)

£ wi *1 * (4019)

i

- .- -
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The average number on hand Ux, is therefore

Ux " 1i. i  * (4.20)i

These values are contained in Table 4.3.

4.4.3 Results for Closed Jackson Oueueing Systems

Obtaining steady-state values for the parameters

for systems 3 and 4 requires a combination of computa-

tional and theoretical results for closed Jackson queue-

ing systems [GORD67, BUZE73, SOLB78]. Results presented

in this section are in the context of the validation

model, system 4. System 4 is a closed Markovian queue-

ing network with M - 4 stations and N - 7 customers, and

lid exponentially distributed service times. Let Pij

be the probability that a unit completing service at

station i will be immediately sent to station J. The

routing matrix P - (Pij] is given by

"0 .25 .75 0

0 0 0 1
P ,,(4.21)

0 0 0 1

.90 0 .10 o4

i : i :' , . . .. .. ....... ... .. ..
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Table 4. 3

Values for Response Variables for Model 2

Response
Value

Variable

4.653

7r 3 .217

114 .261

w15 .174

w6 .348
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The vector of relative arrival rates X = [ X),..., ]

to each station can be obtained by solving the traffic

equation

X= X P . (4.22)

Since the traffic equation only determines X up to

scalar multiple, one component of X may be arbitrarily

set and the remaining (M - 1) components are then

obtained from (4.22). The relative utilization of

station i is given by

Pi Xi/(si wj), 1 < i < M (4.23)

where station i has si servers each with service rate

w i = 1/ Pi. The state space S of this system consists

of the set of all M-tuples x - (xl,...,x1], where xi is

the number of customers at station i, 1 < i < M.

Therefore

M
S - {x Z Z xi= U and xi is a non-negative

~ i-l

integer 1. (4.24)

II
II
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.1 Y(xj) (425

Pjxi/LsilsiXi - i1

and

G(MI) -T Y(xj). (4.26)
xeS i-i

The equilibrium state probability distribution for this

system is given by [GORD671

'Cx) a l/G(14,I 1 TiY(xj) , iS (4.27)

luzen (BUZI73I has developed techniques for computing

the normalizing constant G(14N), the marginal queue

length distributions for each station, the stationi utL-

lizations, (Ui, 1 < i < 14 }and other petrfossae

measures. The actual arrival rate X i* to station I is

then found by using the principle of lob flow baLame

A j* U~j .(426

Uittle'sa f semil ZWUm&te te talma at t

statulft to ot"al the 6teely-ot* ami veit Uu

4 . ~ ..
~
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Wi* from the arrival rate Xi* and the mean number of

units Li* awaiting service

-Li* = Xi*Wi* (4.29)
I!

Solberg's queueing network analysis program CAN-Q

ESOLB80] was used to compute these values for system 4.

The results may be found in Table 4.4. For system 3 we

are only interested in T, the mean time between

successive arrivals of a customer at station 1. The

CAN-Q Program found this value to be 8.07.

4.4.4 Results for the GERT Analysis

For system 4, the mean response time is not

available as a direct result of the CAN-Q analysis. To

obtain this value, we rely on the GERT analysis tech-

niques for generalized activity networks [PRIT66(I),

(11), (111); WHIT691.

The GERT network shown in Figure 4.5 represents
the repair process from the time an individual unit in

* system 4 fails until it is returned to station 1.

Because we are only concerned with calculating T, the

* mean response time, the branch traversal times are

treated as constants using the mean service times { ui}

- found in Table 4.1 and the mean waiting times {Wi*}

found in Table 4.4. The branch traversal probabilities

L-
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Table 4.4

CAN-Q Results for Model 4

Mean Queue Mean Waiting

Station Utilization Length Time

iUi* Li* Wi*

1 4.7809 1.004 2.0998

2 .17928 .036 .29969

3 .41169 .237 .57678

4 .26560 .085 .16068
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correspond to the branching probabilities found in Table

4.2:

q2- P12

q3 =P13 
(.0

q4 - P43

q5 = P41

Therefore the w-function (PRIT66(I), (11), (111)] for

the branch from node j to node kc is given by

wjk(Y) = qecY (4.31)

where q is the appropriate branch traversal probability

and a is the traversal time. Mason's rule [PRIT66(I)]

holds that the equivalent w-function for the open net-

work from node 1 to 9 is given by

wE(Y) -wl 2 v2 4w4 6 w6 7w7 8 w8 9 + v1w 35w56w 778 8,

W w3 e.W5  778w 3  (4.32)

Combining (4.31) and (4.32) we get

q5*eXP( [W4*44I4).{q92xp( [W2*+A2)Y)+qrezXp( W3*+IA3Iy))

1 -q4.exp(EW3*+ 1A34W4*4 )I41))(.3
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Since WE(O) = 1, the mean response time is given by

UE = a/3 y[WE(y)/WE(0)]y - 0

- / q2(W 2 * + V2) + (q3 + (q4/qs)] W3* + U31 +

11 + (q4/q5)] W4* + U41* -
k 2.5418. (4.34)

4.4.5 Selection of Ratio Estimators.

To perform our 2-stage procedure, we must obtain

ratio estimators for each of the specified response

variables. A variety of types of estimators are

available. Suppose the response variable of interest is

r - E[f(X)] where f is a real-valued function and X is

j some stationary random variable associated with the

simulation. In the context of regenerative simulation,

we observe the process { X(s ), s > 0} , where X(S) J-# X,

in IID cycles of lengths { mi : i > 11 and we collect

values {Yi : i > 1 } for each cycle, where Yi is given

by

Yi ] f[X(s))ds (4.35)
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(here Bi denotes the ith regeneration epoch so that

ai - Bi + I -i). Under mild restrictions on the

sample paths of the process {X(s) } , the regenerative

method ensures that

r - E[Y]/E[ M) (4.36)

i and that the pairs {l(Yi,Oi) )are iid. Let
t UiT = (Yi,i) be a column vector with mean vector u and

I covariance matrix . Given a set of n cycles, we

denote the sample mean vector by U and the sample

covariance matrix by [ij]• The classical

regenerative ratio estimator is given by

rc(n) - (4.37)

Fieller (FIEL40) proposed using the estimator

k 01 2
rf(n) -(4.38)

;2 -k22

where k - Z2(1 - 7/2 )/n. This estimator is the midpoint

* of Fieller's 100 (1 -Y )% confidence interval. Three

other ratio estimators have been constructed in an

*attempt to reduce the bias found in the classical

method. The jacknife estimator, an extension of the

work of Quenouille [QUEN49, 561 is given by

/
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rjn Cl/n] E [n(Y/3) (n-1)( E Yk/ E cOk)J.
i1 ki kfi

(4.39)

Tin (TINEOJ proposed

it(n) -(Y/ct I {1+( 312/(i ^~ 22/ ct2I/nJ
(4.40)

Beale [BEAL62] offered a similar estimator

rb~n-[Y/'61{fl+ 12(ny )1/1+ 2/(n(4.41)

All of thfese ratios are strongly consistent and are

biased. Iglehart [lGLE751 compared these estimators in

their use in regenerative simulation. For long simula-

tioni runs (i.e. many tours, as we have used here), he

concluded that the classical ratio estimator is the pre-

f erred choice. We therefore chose to use that type of

estimator in this research.

We shall now proceed to show the specific ratios

employed. For the (s, S) inventory model we define the

following functions:

* f1(i) i

(4.42)
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where I(X) is the indicator function for state X. If

Oi is the starting time for the ith regenerative cycle,

and oi - Oi + 1 - Bi, then we have for the Ith *reward*

on the ith cycle

8 i+i -1

Yi( L) E.fg(Xj) , i > 1, L- 1, 3, 4, 5, 6.
j= Bi  (4.43)

Crane and Iglehart [CRAN74] showed that

E[f 1(X)] - E[Y1 (L)]/E[ MIl • (4.44)

Therefore, our ratio estimators are

(4.45)a = (L)/ , L= 3,...,6

For system 3, the steady-state parameter of

interest is RT*, the mean response time. Let ti denote

the ith observation of response time--that is, the

ith time between successive arrivals by a customer to

station 1. Let Yi a N 0 ( a i ) where N is the fixed

.4 nuaber of customers in system and Mi is the ith cycle

length. Define

Ai number of arrivals to station 1

on the ith tour.
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From Little's formula and the regenerative structure of

the system it can be shown that (LAVE77c]

n
RT* - limfl/nJ E tj V.P. 1

(4.46)

A - E(YiJ/E(AiJ

This sugests that we use

RT - [N - 31/1 (4.47)

as our regenerataive estimator, where and X are the

sample means.

For system 4, the steady-state parameters to be

estimated are the average response time RT* from

{ failure until completion of repair and the station uti-

lizations { Uj.*, 1 < i ( 4 1 . Let xi(t) be the nuber

of customers at station i at time t. We define the

following variables on the kth regenerataive cycle:

Rk - number of units completed on the kth tour

Gk(i) -I min {xj(t), sildt, 1 < <N
Bk

N Ok+l
Hk Z I xj(t)dt

*iM2 Ok
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From Little's formula and the regenerative structure of

the system it can be shown that [LAVE77c

n
RT* - lim[l/n Z ti w.p. 1

n-w i-1
(4.46)

- E[Yi)/E[Ai°

This sugests that we use

RT -N. (N /A (4.47)

as our regenerataive estimator, where and X are the

sample means.

For system 4, the steady-state parameters to be

estimated are the average response time RT* from

failure until completion of repair and the station uti-

lizations { Ui*, 1 < i < 4 }. Lot xi(t) be the number

of customers at station i at time t. We define the

following variables on the kth regenerataive cycles

Rk  number of units completed on the kth tour

Ok+1
Ok(f) m j 0 ln xi(t), si Idt, 1 < i < N

Rk- E f Ritt .
1-i2 Ok

.-. . • ,--iv
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From Little's formula and the regenerative structure of

the system it can be shown that (LAVE77cJ

n
RT* -lim~l/ni Z ti w.p. 1

ni-i
(4.46)

A S E(Yil/E(Ai]

This sugests that we use

RT [N - 31liA (4.47)

as our regenerataive estimator, where and Xare the

sample means.

For system 4, the steady-state parameters to be

estimated are the average response time RT* from

failure until completion of repair and the station uti-

lizations { Uj*, 1 < i <4 1 . Let xi(t) be the number

of customers at station i at time t. We define the

following variables on the Jcth regenerataive cycle:

Rk - number of units completed on the kth tour

*Gk(i) a .1SI min {xi(t), sildt, 1 < i<(

M Ok~l
Rk E f xi(t)dt

*i=2 Ok
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Thus GOOi is the time-integrated nuber of busy servers

at station i during cycle kC and Hk is the time-

integrated number of units being repaired in the kth

cycle. Using the standard regenerative argument, we

find

-i E[Gl(i)J/E[ all 1 < i <H M (4.48)

which is estimated by

I -G~i/a 1 < i < M (4.49)

To estimate RT* we again employ Little's formula.

Consider

E[HICJ/Elctk) expected number of customers

undergoing repairs

Istz:Z:
t at4 lexpectedtie

compleion r t response ie

- - *RT*

Thus we have

RT* a ECHICI/E(RkI (4. 50)

which implies that our regenerative estimator should be
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RT -R (4.51)

where H and A indicate the sample means over a set of

regenerative tours.

Simulation models of the various queueing

systems were coded in SLAM [PRIT79]. FORTRAN IV

routines were used to perform the control variable

procedures. Listings for these programs appear in the

Appendix. The results of the experimentation and an

analysis of their implications are found in Chapter V.

0

4i



CHAPTER V

EXPERIMENTAL RESULTS

This chapter presents the results of the

4. meta-experiments described in Chapter IV. The first

section contains the results of the first three models

using top-controlled or bottom-controlled regenerative

analysis. The results are discussed and their implica-

tions for the two-stage method are presented. In the

second section we present the results of the fourth

system, our validation model, and we compare the two-

stage procedure with the other techniques. The last

section summarizes the findings of this research and

presents guidelines for the practical application of the

method.

5.1 Demonstration of Bias and Coverage Problems

Throughout the literature we have seen a

multitude of attempts to control the numerators of

various ratio estimators. Iglehart and Lewis (IGLE791

mentioned the possibility of controlling the denominator

but did not pursue the idea. In this section we present

-130-

-.....
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the results of systems 1, 2, and 3 where we attempted to

explore the merits of both of these techniques.

To effectively control the numerator or

denominator of a ratio estimator, we are faced with task

. ,of finding controls which are strongly correlated with

the appropriate regenerative measurements. The use of

the "standardized service-time" and "standardized flow"

variates appears to fill this requirement while taking

advantage of all of sampling performed during the normal

course of a simulation.

In Wilson's [WILS79] work he found that it was

necessary to group the regenerative tours into batches

to insure the convergence to normality for the service-

time variables. In this research we found that batching

was also necessary to obtain the convergence to joint

normality of both classes of controls. Applying the

univariate Shapiro-Wilk test to each control separately

in an overall Bonferroni-type test for joint normality,

we determined a minimum batching size which was used

throughout the experimentation. This batching procedure

is fully explained in 5 5.3.1. Table 5.1 displays the

batch sizes used. The observations {(Yk,Xk) : 1 Ck < n}

for each tour were averaged over the n/v batches of

size v:
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Table 5.1I

Tour-Batching Used in Experimentation

System Tours/Batch Batch/Experiment

41 15 250

2 10 50

3 18 100

4 24 50

or
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jv
Yj(v) - [i/v• Z Yji-(J-l~v+l

i-< i < n/v - k (5.1)

jv
xj(v)- [l/v] • Z Xi

For the jth batch of v tours, the standardized controls

A = (Cj, Dj] (5.2)

were collected over the QC work stations and QD

branching points. In the case of top-controlled

analysis, we performed a regression of

Zj(v) - Yj(v) - ixj(v) (5.3)

on the components of A for each of the response

variables. For bottom-controlled analysis, we performed

a regression of Xj(v) on the components of b. For each

of the first three systems we shall use the following

labelling scheme: (1) meta-experiments labelled "Am

refer to uncontrolled estimations (2) "B* meta-

experiments are those using top-controlled estimators;

and (3) OCO meta-experiments are those using bottom-
4controlled estimators.

For system 1, we have two sampling procedures
4

involved: the sampling of interarrival times and ser-

vice times. For each of these, service-time controls

-ti
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were constructed and applied to the numerator and the

denominator. Tables 5.2, 5.3, and 5.4 present the

results of our selected performance measures. We see a

marked bias problem in our top-controlled estimates. We

also find large variance reductions accompanied by great

degradations in coverage. In the case of bottom-

controlled analysis, we find that we have over-corrected

the bias in the classical estimate. While the con-

fidence interval coverage is acceptable, it may be a

direct result of the variance increase.

In the (s,S) inventory model, the only sampling

which occurs during this simulation is that of the

demand distribution. Thus our control variable for

system 2 is based upon the periodic demand di. Tables

5.5, 5.6, and 5.7 display the values of the performance

measures for this system. Again, we find that the top-

controlled estimator is generally biased. The control

has very little correlation with {Zj : 1 < J 5 n/v}.
Hence, we find very little variance reduction in meta-

experiment B and consequently there are no problems in
4

confidence interval coverage. Applying the control

variable to the denominator produced somewhat mixed

results. In general, the bias problem is worsened by

the use of the bottom control, although in the case of

i ,
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Table 5. 2

bias in Ratio Estimators for System 1

L Meta-Experiment Estiinand
rpRT U

A .0052 .0015

B.0536 .0148

C -. 0058 -. 0014

Table 5.3

Variance Reduction Percentages Achieved in System 1

Meta-Experiiuent Bstiauand

RT U

*B 57 95

C --33* -132'

*Indicates a variance increase
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Table 5. 4

Coverage of Nominal 90% Confidence
Intervals for System 1

Meta-Experiment Estimand

RT U

A 89 88

B28* 0*

C 84 88

*Significantly below the 90% level

Table 5.5

Bias in the Point Estimator for System 2

Meta-Exper iment Estimand

w 3 w14 W5 W6

A -. 0012 - .0002 -. 0004 .0026 -. 0020

B .0019 .0001 -. 0009 .0033 -. 0025

C -. 0230 -. 0012 -. 0017 .0018 -. 0036
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Table 5. 6

Variance Reduction Percentages Achieved

in System 2

Meta-Experimuent Estiiuand

*X IT3  wT4  W6

B 3 2 3 7 7

C - 139* - 23* -l0* ~2S* 1l9*

*Indicates variance increase

Table 5.7

Coverage of Nominal 901 Confidence
Intervals for System 2

Meta-Experiment Estimand

A 96 92 86 90 98

B90 a8 90 86 96

*C 88 s8 92 90 92
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w5 there was a marked improvement. As was observed in

system 1, valid confidence intervals were obtained under

the condition of variance increases.

After examining the results of the first two

systems, we determined that due to their lack of corre-

lation with the denominator alone, the standardized

service-time variables have very little effect when used

in the denominator. Moreover, in a broad range of

queueing systems, these variables have demonstrated

their value as top controls. We therefore chose to con-

sider service-time variates for controlling the

numerator and flow variates for use in the denominator.

In system 3 we have available three top controls

(service-time variables) and one bottom control (flow

variable). Results for the selected performance mea-

sures appear in Tables 5.8, 5.9, and 5.10, and are

similar to those found in the other systems.

Top-controlled regenerative analysis appears to

be plagued with two fundamental defects. First, the

procedure causes a relatively large bias to be intro-

duced into the ratio estimator. Second, the variance

reductions obtained are over-estimated sine the vai-

ance estimator appears to systematically underestimate

the true variance. Taken together, these phenomena



139

Table 5. 8

Bias in the Point Estimator for System 3

Meta-Experiment Estimand

RT

A .0025

B .0685

C .2931

Table 5.9

Variance Reduction Percentages Achieved
in System 3

Neta-Experiment Estimand

1 * S 82

* C -371'

*Indicates variance increase
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Table 5. 10

Coverage of Nominal 90% Confidence
Intervals for System 3

Mota-Experimuent Estiand

RT

A 94

B 40*

C 58*

*Significantly below the 90% level
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result in degradation of confidence interval coverage.

Schruben [SCHR79] evaluated several causes of loss of

4coverage in confidence intervals. If a normally

distributed estimator has bias 8 and variance 2, he

) showed that the coverage of a nominal 100(1 -
J

confidence interval is given by

0(-B/a + Zl_ d/2) - (-B/a - Zl a1 2)  (5.4)

where 0 (.) is the standard normal distribution

function. He also found that a bias as small as one

tenth of the standard deviation creates coverage

problems. In addition, Schruben showed that the perfor-

mance of the interval estimator decreases as the sample

size is increased. In terms of regenerative simulation,

he found that when the point estimate contains little

bias, the confidence intervals tend to be too wide; when

a large bias exists, the interval widths are too narrow.

Thus, we see that if the bias is increased and we obtain

a simultaneous variance reduction, the coverage will

fall significantly below the nominal level.

In the context of bottom-controlled estimators,

other problems are in evidence. The application of bot-

tom controls appears to over-correct the bias in the

classical estimator. This may in turn lead to

a° l .. .I.. . .....' 'r ... ... . ... . . . . .'.. .. .... ....... " "° " i - i
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increasing the magnitude of the bias. When this occurs,

the coverage declines as in the case of top-controlled

estimators. A greater problem in bottom-controlled

estimators is the accompanying increases in the

variance. While this is generally undesirable, we see

from equation (5.4) that such an increase will maintain

the prescribed coverage provided the bias is not

significantly increased.

5.2 Experimental Results for the Two-Stage Procedure

The variance reductions achieved using the top-

controlled regenerative estimators for systems 1 and 3

ranged from 57% to 95%. If the top-controlled bias

problem could be solved and the confidence interval cov-

erage improved, the technique would yield practical and

beneficial results. Wilson [WILS79] suggested a poten-

tial solution to these problems. By increasing the

batch size while holding the total number of batches

constant, he found that coverage could be significantly

improved. This is confirmed by the development in

Chapter III which shows that the bias in top-controlled

point estimators is of order l/ /n. This technique,

however, contradicts the purpose of applying controlay

we wish to gain more information from shorter simulation
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runs rather than being forced into longer and more

expensive simulations.

When the experimental results of the top- and

bottom-controlled estimators are examined together, we

see that the strengths of one technique are the weak-

nesses of the other. Thus, taken together, the methods

may be able to compensate for each other's deficiencies.

The implementation of this idea is the two-stage

estimator.

In the validation model, system 4, there are

four queues which give rise to four service-time varia-

bles, and two branching points which enable us to form

two standardized flow variables. For the two-stage

procedure, we previously decided to apply all of the

service-time variables to the numerator; for the denom-

inator, the flow variate with the larger correlation was

selected. The observed results {(Yi, Xi) : 1 < i < n}

of the n - 1200 simulated tours for each experiment were

averaged over k - 50 batches each of size v - 24. For

the jth batch of tours, we accumulated the standardized

components of the corresponding control vectors

9j a [C1j, C2J, ..., CQC,j]T (S.5)

j a (D1j, D2j, ..., DQD,JI T  (5.6)

- - -
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where OC and QD are the number of top and bottom

controls, respectively. Next we selected the column of

the matrix g which had the strongest correlation with

X(v), say D*, and performed a regression of Xj(v) on

Dj*. Let

Xj*(v) - Xj(v) - dDj* (5.7)

where d is the regression coefficient. We next

performed a regression analysis of

- Yj(v) - rX(v) (5.8)

on the components of Cj, I < j k. This procedure

was performed for each of the response variables of

interest. In addition, we also determined the uncon-

trolled, top-controlled and bottom-controlled estimators

and the corresponding confidence intervals to allow a

complete comparison of the three techniques for con-

trolled regenerative analysis. Table 5.11 indicates

which controls were applied in each run. Controls 1, 2,

3, and 4 are the service-time variates, and controls 5

and 6 are the flow variates. The correlations of con-

trols 5 and 6 with the number completed per cycle were

- .046 and .063, respectively. Their correlations with

the tour length were - .114 and .047 respectively.
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Thus, for the two-stage estimator, control 6 was applied

to the denominator of the RT estimator and control 5 was

used for the utilization estimators.

Tables 5.12, 5.13, and 5.14 present the results

of the meta-experiments. The biases observed in the

uncontrolled and one-stage controlled estimators closely

resemL e those found in systems 1, 2, and 3. In every

case but U1 , the bias found in the two-stage estimator

is smaller than that of the top-controlled estimate.

(An explanation of the problems with Ul will be pre-

sented in the next section.) The observed variance

reductions and increases for meta-experiments B through

E are also similar to those found earlier. Applying the

two-stage method appears to yield variance reductions

which are similar although slightly smaller than those

found in top-controlled analysis. From a decision-

maker's viewpoint, perhaps the most important aspect of

a simulation is the confidence interval. It is here

that the two-stage method proves its merit. For every

estimand, the technique raises the coverage of the top-

controlled estimator, giving truly valid confidence

intervals.

To sumarize the findings thus far in this

chapter, we have seen that top-controlled regenerative

6



146

Table 5. 11

Standardized Control Variates Selected
for Use in System 4

IMeta-Experiment Selected Controls Type of Estimator

A none classical

B 1, 2, 3, 4 top-controlled

C 5 bottom-controlled

D6 bottom-controlled

E 5, 6 bottom-control led

F 1, 2, 3, 4 and (5 or 6) two-stage

Table 5.12

Bias in the Ratio Estimators for System 4

Meta-Experiment Estimand

RT Ul U2 U3 UJ4

A .0025 - .0004 - .0010 .0006 -. 0004

B.0158 - .0045 .0005 .0034 .0014
C 01 02 01 00 00

C- .0011 - .0062 - .0011 .0001 - .0008

D - .0006 - .0062 - .0013 .0001 - .0008

r .0126 - .0103 .0003 .0029 .0011
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Table 5.13

Variance Reduction Percentages Achieved in System 4

*IMeta-Experiment Estimand

RT U1  U2 U3 U4

B 64 52 61 78 89

C -9* -136" - 8* 2 -5*

D -23* -283* - 2* - 16' -18

E -31' -409* - 9* - 14 -23*

F 59 -214' 60 62 73

*Indicates variance increase

Table 5.14

Coverage of Nominal 90% Confidence
Intervals for System 4

Meta-Experiment Estimand

RT U1  U2 U3 U4

A 92 92 92 9i 92

B 84 82 82 80* 82

C 90 88 96 86 92

D 90 96 94 88 92

E 94 96 98 86 94

F 90 90 92 88 88

*Significantly below the 90% level
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estimators provide significant variance reductions

but ultimately result in unsatisfactory coverage of

confidence intervals. The bottom-controlled method will

provide valid intervals, but results in variance

increases. The two-stage technique has been able to

achieve large variance reductions while maintaining the

nominal level of coverage.

5.3 Guidelines for Using the Developed Procedures

This section consolidates the findings of

sections 5.1 and 5.2 into practical guidelines for the

use of the developed technique. Test procedures are

also presented to aid the practitioner in avoiding

potential problems.

5.3.1 Insuring Convergence of Concomitant Va!

The two-stage method is dependent upon the

convergence of the control variates to joint normality.

In practice, we must insure that the vector of controls

is sufficiently close to the limiting multivariate nor-

mal distribution for the expressions of relative bias

and variance to be valid. To insure adequate con-

vergence of the concomitant variables, the variates must

be accumulated over time periods long enough for the

sample sizes observed at the work stations and branching

i . . .. ..I. .. . . . . .. . i . . .
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points to produce a central-limit effect. While we have

proposed a multivariate Shapiro-Wilk test in Chapter

III, tables of critical values are not yet available.

Thus, we are as yet unable to apply this procedure. As

an alternative, we recommend the following procedure

based upon the Bonferroni inequality and the Wiesberg

and Bingham (WEIS75] version of the Shapiro-Wilk test:

1. Based upon cost and feasibility, choose a sample

size n representing the number of cycles to be simulated

in a pilot run. If possible, take n > 1000.

2. For each of the n cycles accumulate: (1) nij,

the number of service times started at the ith service

center or customers passing through the (i - QC)th

branch during cycle j; and (2) the raw (unstandardized)

controls

nij
CRij "Z kPijk , 1 < i < QC + QD, 1 < j I n (5.9)

kul

where Pijk is the kth sample drawn at control point i in

cycle J.

3. Let v be the batching size, t the test variable

index, and Z the number of batches. Set v = t * 1 and

* -mn.

...., .................... :..................' i,: ;,"i:;:' -'-:: -'' ... = . .
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4. Compute the t-dimensional vector mn whose jth

component is given by

mj~ l {j - 3/81 U { + 1/41) 1 <~ j <
Ts.lo)

5. Compute the standardized controls

iv
Cij, (nijv)-~ - (CRik - nikiii)! aj (5.11)f k-(j-l)v+l

where

iv
njiv a E nik 1 <~ js Z~2 (5.12)

k-(j-l)n+l

and let -div denote the sample mean for the ith

standardized control using batch size v.

6. Compute the modified Shapiro-Wilk statistic for
the tth control

we (UTC(t)v)2/(IRTn)
W 2 (5.13)

Z (Ctjv - 't)

where C(t)v indicates the sorted statistic..

7. For a given significance level a, compare W' to

the critical value W'( a/0), Q Q C + QD, given in
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(SHAP72]. If W' > W'( /Q), then variable t may be

regarded as univariate normal. Set t = t + 1. If

t > Q, the procedure terminates, otherwise, repeat4

step 6. If W1 <W'( cc/Q), let v - v + 1 and Pm =n/v],

where [a] is the greatest integer function, and return

to step 4.

This procedure will insure that we have selected

a batch size v large enough for the control variables to

be simultaneously univariate normal. With a batch size

determined, the total number of cycles required for each

experiment may be evaluated using the formula N - v.nv,

where nv is the number of batched observations desired.

5.3.2 Selection of Controls

The objective in applying the two-stage

procedure is to obtain a variance reduction for the

estimator while keeping bias to a minimum. Equations

(3.72) and (3.74) for the relative bias and variance of

the ratio estimator f(b, d) form the basis for our

recommendations.

Due to the loss factors, it is recommended that

the numbers of controls QC and QD be kept low. For QD,

we suggest that one flow variable be selected for the

denominator. The flow variate which t-s the largest

correlation with the denominator is the logical choice.
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To select variables to apply to the numerator of the

regenerative ratio, Wilson (WILS79] gives a procedure

based upon step-wise regression. We will point out that

this is also based upon choosing a vector which will

result in the largest correlation with the numerator.

5.3.3 Follow-Up Analysis

After the regression procedures have been

performed, some subsequent analysis is required. In

system 4, we saw that we had achieved our stated

objective with each of our estimands but U1 . For the

practitioner it is of vital importance to evaluate the

magnitude of the relative bias and to examine the

variance of the two-stage estimator. If he has followed

the recommendations of S 5.3.1 and 5.3.2, he has only to

examine two correlations to determine if the two-stage

procedure has resulted in improved performance of the

ratio estimator.

To evaluate the new variance estimator, the

correlation between Y*, the controlled numerator, and

X*, the controlled denominator, must be examined. If

this correlation is positive, a variance reduction will

be realized. Should this factor be negative, however, a

variance increase is likely. The magnitude of a nega-

tive correlation will influence the size of the increase
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(i.e., small correlations give little variance

increase). In the case of U1 in system 4, Y* and X*

show a strong negative correlation. This may be seen

from the fact that fewer busy servers at station 1 imply

that more units are under repair, thus causing an

increase in cycle length. This correlation between Y*

and X* gives rise to the variance increase for U1 .

After examining the correlation between Y* and

X*, the practitioner should next evaluate the relative

bias. Again, if the previous suggestions have been

followed, he need only determine the correlation between

X* and ^)Z(, 4). A strong positive or negative correla-

tion will cause the relative bias to be increased. As

we have discussed earlier, this may give rise to lack of

confidence interval coverage.

In conclusion, we have presented a two step

method for checking variance and bias increases. Should

the practitioner find that they have not been increased,

he may feel confident that the procedure has worked.

If, however, variance and/or bias has been increased, it

is not clear that selecting another set of controls will

result in an improvement. In this case, another method

should be considered to obtain the estimates desired.



CHAPTER VI

SUMARY, CONCLUSIONS, AND RECOMMENDATIONS

This chapter summarizes the contributions of

this research. Recommendations for future research are

also presented.

6.1 Research Overview

In this research we have accomplished the

following objectives: (1) to develop a practical method

for applying concomitant control variables in a

regenerative setting to obtain variance reductions and

valid confidence intervals; (2) to establish theoretical

properties of the designated controls; (3) to validate

and evaluate the developed method; and (4) to determine

guidelines for using the method. Two types of standard-

ized control variates were employed in a two-stage

method to control both the numerator and the denominator

of a regenerative ratio estimator. These variables have

been proved to converge in distribution to a multi-4
variate standard normal distribution over runs (or

cycle-batches) of increasing length. This distribution

served as a foundation for performing the required

-154-
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regression analyses and for constructing the final

confidence interval estimates. In addition, exact

formulas for the relative bias and variance of the two-

stage estimator were developed.

The validation and evaluation stage of this

research showed that the developed method can yield

substantial variance reduction while maintaining the

confidence interval coverage. Variance reductions of

50%-75% were achieved with no loss of coverage.

However, the two-stage method was observed to increase

variance under certain conditions.

While not a main objective of this research, a

new test for multi-variate normality was proposed. The

test was based upon the univariate Shapiro-Wilk

statistic.

The results of this research confirm the

findings of others as to the practicality of applying

control variates to regenerative queueing network simu-

lations. The method developed here would allow the

practioner to routinely incorporate variance reduction

methods into his simulations. Following the guidelines

presented here, some validation is possible when the

model is not analytically tractable.

J ~~~. : ............ ' .: ..... ' :" wl'
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The most important contribution of this research

is the two-stage method and the expressions for its

relative bias and variance. We have shown these to be

far superior to any other regenerative control proce-

dures found in the literature today.

6.2 Recommendations for Future Research

The results of this research show that the two-

stage method is potentially effective in regenerative

systems. In practice, it may be difficult to identify a

tour-defining state for the regenerative analysis. Even

if one is located, the returns to that state may be so

4infrequent that a reasonable number of tours may not

occur during a run of affordable length. Further

investigation is needed to determine how the two-stage

method performs using techniques presented in Chapter II

for approximating a regenerative process.

The multi-variate Shapiro-Wilk test presented

needs to be further developed. The procedure for

locating the proper quadratic programming problem must

be validated. In addition, the null distribution of the

statistic must be determined to obtain tables of criti-

cal values. When fully developed, this test would have

widespread applications extending far beyond simulation.
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PROGRAM M4A INJI INPUT, OUTPUT, TAPE5= I NPUT, TAPE6=OUT PUT. TAPE7, TArE8)
DIMENSION NSET(5000)

C
C THIS PROGRAM IS DESIGNED TO SIMULATE OPEN RFOENERATIVE
C QUEUEING SYSTEMS. FOR EACH CYCLE OR BAICH OF CYCLES.

AL C THE TOUR LENGTH. TOTAL TINE IN SYSTEM, AND NUMBER or
C CUSTOMERS Ar IHE INPUT, BRANCH, AND SERVICE POINrS AND
C THlE ASSOCIArED VECTORS OF CONTROLS ARE COLLECTED.
C NOTE: TO COLLECT THE BRANCH DATA, FOR EACH BRANCH Of
C INTEREST J. TIIE USER MUST COLLECT VIA TIlE NETWORK INPUT:
C XX(2*J-1)=NUMBER OF CUSTOMERS ARRIVING TO BRANCH J
C XX(2*J)-NUMBER OF SUCCESSES AT BRANCH J

COMMN/SCOMI/ATRIB( 100),DD( 100),DDL(100).DTNOW.1I ,MFA,MSTOPJ,NCLNR
1,NCRDR.NPRMT,NNRUNNNSET,NTAPESS(100),SSL(100),TNEXTTNO0WXX( 1003

COMMON QSET(50OO)

EQUIVALENCE (NSET(l),QSET(1))
NNSET=5000
NCRDRa5
NPRNT=6
NTAPEm7
CALL SLAM
STOP
END
FUNCTION USERF( IFN)
COMMON/SCOMI/ATRIB( 100D( 100),DDL( 100),DTNOW,1I ,NFA,M4STOP,.NCLNR
1 ,NCRDR, NPRNT, NNRUN,NNSET, NTAPE,S554100), SSL( 100), TNEXT. TNOWXX( 1003
COI4MON/UCO41/NUM4QS, CONTROL( 203, NUMCUST( 20) ,AMEAN( 203,SO( 20).
1 CYSTART, SYSTIME, ISTREA?4(20),NU?4ACT,NUH4CYC, IBTCH4SZ, ICYCCNT,NUMSR

C
C USERF(1) PERFORMS INTERARRIVAL ON CREATE NODE
C USERF(2) SHOULD BE ON ARC OUT OF CREATE NODE TO CHECK FOR REGENER.
C USERF(3) SHOULD BE ON ALL EXIT ARCS TO COLLECT TINE IN SYSTEM
C USERF(J+3). J.GT.O. SHOULD BE ON ARC OUT OF QUEUE J TO PERFORM
C SERVICE TIME ACTIVITIES
C

IF (IFN.GT.3) GO TO a4
GO TO (1,2,3), IFN

C
C INTERARRIVAL COMPUTATIONS (ASSUMED EXPONENTIAL)
C
1 ATIME-EXPON(AMEAN(13, ISTREAM(1))

CONTROL( 1)=CONTROL( 1)4.AT INC
NUMCUST(l1)-NUMCUST( T)+1
USERF-AT IME
RETURN

C
C VERIFY NEW CYCLE OR NOT
c
2 CALL CYCLECK

USERFO
RETURN

C
C COMPUTE TIME IN SYSTEM
C
3 SYSTINEuSYST1IME+(TNOW-ATRIS( 1))

USERFwO
RETURN

C
C PERFORM SERVICE TIM4E COM4PUTATIONS (ASSUMED EXPONENTIAL)

4 I-IFN-2
ATIME=EXPON(AMEAN( I), ISTREAM( I))
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CONTROL( I )CONTROL( I )AT INC
NU1NCUST I )=NUMCUST( I )4
USER F-AT1I MEIRETURN
SUBROUTINE INTLC
COMMN/SCOMI/ATRIB( 100).DD( 'IO)hDDL( 100).DTNOW, I I,MFA,MSTOP,M4CLNR
1,NCROR,NPRNr.NNRUN.NNSET.NTAPE,SS(100),SSL(100).TNEXT,TNOW.XX(100)
COMMON/UCOMI/NUMQS,CONTROL(20),NUMCUST(2),A4EAN(20) ,SD(20),
I CYSTART,SYSTIME, ISTREAM(20).NUMACT,NUMCYC, IBTCI4SZ, ICYCCNT,NUMBR

C
C READ IN NUMBIERS OF QUEUES AND BRANCHES
C

READ (5,10) NUMQS.NUMBR:
10 FORMAT(212)

NUMACT-NWIQS
C READ IN MEAN, STANDARD DEVIATION, AND RANDOM NUMBER STREAM
C FOR THE INPUT PROCESS, SERVICE PROCESSES, AND THE BARCHIMOS
C IN THAT ORDER.

DO 30 I=1.1+NUMQS+NU4BR
READ (5,20) AMEAN(I).SD(I),ISTREAN(I)

20 FORM4AT(2F10.5, Ii)
30 CONTINUE
C READ IN BATCHING SIZE AND TOTAL NUMBER OF CYCLESREAD (5,35) IBTCMSZ
35 FORMAT ( 12)

READ (5.37) NUMCYC
37 FORM4AT (16)

I CYCCNT=O
DO 40 1-1,20
CONTROL( I )=.O

a No co UST(I )uO
SYST IME-O.O
WRITE(6,50) NUMQS, IBTCHSZ,NUMlCYC

50 FORMAT(1X,-THERE ARE*,12,- QUEUES. BATCH SZ IS *,12,/,1X,
1 *SIMULATION IS FOR *,16,* CYCLES.*)
WRITE(6,60)

60 FORM4AT(1X,*FII.E*.OXMEAN*.12X.*SD*,12X,-STREAM*)
WRITE(6,701 AMEAN(1),SD(1),ISTREAM(1)

70 FORM4AT(1X,*INPUT-,6X,FIO.5,5XF10.5,1OX, 12)
DO 90 1=2,NUMQS+1
jol-1
WRITE(6.8O) J,AMEAN(I),SD(I),ISTREAM(I)

so FORN4AT(lX.*QUEUE -,12,3XFlO.5,5X,FlO.5,10X,I2)
90 CONTINUE

CYSTART=TNOW
RETURN
END
SUBROUTINE CYCLECK
COMMN/SCOMI/ATRIB(1OO),00(100),OOL(100),DTNOW. I,NFA.MSTOP,NCLNR
1,NCRO,NPRNT. NNRUN.NNSEI,NTAPE, SS( 100) ,SSL( 100) ,TNEXT, TNowxx(100)
COHMON/UCON1/NUMQS,CONTROL(20),NUM4CUST(20) .AM4EAN(20).SO(20).
1 CYSTARtT,SYSTIME. ISTREAM(20),NUM4ACT,NUMCYC, IBTCHSZ, ICYCCNT,NUMSR

C
C CHECK FOR TOUR DEFINING STATE
c

ICHECKGo
* 00 10 Im1,Nmwqs

10 IF NNQ1(I)INNAT() .AE. 0) ICNECK&I
IFI ( 16iCK .CEQ. I1) RETURN
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C
C A NEW CYCLE IS STARTING
C

I-ICYCCNT
ICYCCNT= ICYCCNTti
1=MOD(I. IBTCHSZ)

IF (Ii .NE. 0) RETURN
IF (I .EQ. 0) RETURN

C
C SAVE LAST BATCHED DATAI C

ALPHA-TNOW-CYSTART
IF (IBTCHSZ .EQ. 1) GO TO 105
DO 30 I-1,NUNQS+l

C
C STANDARDIZE SERVICE-TIME CONTROLS

AzNUNCUST( I)
CONTROL( I):x(CONTROL( 1)-A*AM4EAN( I )/(SD( I *SQRT(A)J

30 CONTINUE
DO 40 1-1,NUNBR

J=I+NUHQS+1
NUMCUST(J )*XX(1I22-1)

C STANDARDIZE FLOW CONTROLS
C

A=XX(2*I-1)
CONTROL(J)=(XX(2I1)-A*AMEAN(J))/(SD(J)*SQRT(A))

40 CONTINUE
105 WRITE(8,107) ALPHA,SYSTINE,(NUMCUST(I),COhROL(),ul,4)
107 FORI4AT(2F10.4,4( 16, Fl0.4))
C
C CHECK FOR END OF SIMULATION
c

IF(ICYCCNT GE. NUMCYC) MSTOP-1
C
C REINITIALIZE FOR NEXT CYCLE
C

SYST I NE-.0
DO 120 I-1,NUMQS.1+NUM8R

CONTROL( I )O.O
NUNCUST( I)=0

120 CONTINUE
CYSTART-TNOW
RETURN

END
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CENDENNY.MM1 QUEUE,6/15/81;
NETWORK;

CREATE,USERF( 1),,1;
ACT,USERF(2);
QUEUE(1);

AC/1USERF(4);
COON;
ACT.USERF(3),
TERM;

I ENDNETWORK;
IN.;
1 0

1.0 1.0 9
.50 .50 9

375001
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THSPROGRAM M4AIN( INPUTOUTPUT,TAPE5zINPUT. TAPE6=OUTPUT,TAPE7, TAPF.6)

C HSPROGRAM IS DESIGNED TO SIMULATE CLOSED REGRENERATIVE
C QUEUEING SYSTEMS. FOR EACH CYCLE AR BATCH OF CYCLES, IT

*C COLLECTS:
C 1) TOUR LENGTH ALPHA
C 2) TOTAL CUSTOMER TIME IN SYSTEM

*C 3) NUMBER OF COMPLETED CUSTOMERS
C 4) BUSY TIME FOR EACH SERVICE ACTIVITY
C 5) NUMBER OF CUSTOMES ARRIVING TO EACH BRANCH OR ACT.
C 6) CONTOL VARIABLE FOR EACH BRANCH AND ACTIVITY
C
C NOTE: IN THE NEWORK, THE USER MUST COLLECT
C XX(2*J-1)=THE NUMBER OF CUSTOMERS ARRIVING TO BRANCH
C POINT J
C XX(2*J)=THE NUMBER Of SUCCESSES AT BRANCH J
C

DIMENSION NSET(5000)
COMMON/SCOM1/ATRIB( 100),DD( 100),DDL( 100),DTNOW.1II,MFA,MSTOP,NCLNR

1,NCRDR,NPRNT.NNRUN,NNSET,NTAPE,SS(100),SSL(100),TMEXT,TNOWXX(l00)
COMM4ON QSET( 5000)
EQUIVALENCE (NSET( 1),QSET( 1))
NNSET-5000
NCRDR-5
NPRNT=6
NTAPE=7
CALL SLAM
STOP
END
FUNCTION USERF( IFN)
COMMON/SCOMI/ATRIB(100).DD( 100),DDL( 100),DTNOW,1I ,MFAMSTOP,NCLNR
1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE.SS(100),SSL(100),TNEXT,TNOW,XX(l00)
CO#*ON/UCOMI/NUMQS,CONTROL( 20) ,NUMCUST(20),AMEAN(20) ,SO(20).
ICYSTART, SYST IME,lISTREAM( 20), NUMBR, NUMCYC, IBTCHSZ, ICYCCNT, NUMOSTS,
1 NUMCOMP

C IN NETWORK, USERF(I) IS ON ARC LEADING INTO QUEUE 1.
C USERF(I+NUMQS) IS ON ARC OUT OF QUEUE 1.
C

IF (IFN .GT. NUMQS) GO TO 14
C
C VERIFY NEW CYCLE OR NOT AND COMPUTE TRAVERSE TIME
C

IF (IFN .ME. 1) RETURN
SYST IME-SYST IME+( TNOW-ATR 18(1))
NUMCOMPzNUMCOMlP+1

2 CALL CYCLECK(IFN)
4 USERFwO

RETURN1 C
C PERFORM SERVICE TIME COMPUTATIONS
C
14 I=IFN-NUMQS

ATIME-EXPON(AMEAN( I), ISTREAM4( I)
CONTROL( I)=CONTROL( I )4ATIME
NUMCUST(I)-NUMCUST(I)+1
USERFwAT IME
IF (I .NE. 1) RETURN
ATRIB( 1)=TNOW+ATIMC
RETURN
END
SUBROUTINE INTLC
CONMN/SCON1I/ATRIB(I00),OO(100),OOL( 100),OTNOW, 'IMFA,MS3TOP,N#CLNR



1.NCRDRNPRNT,NNRUN,NNSET,NTAPE.SS(100).SSL(100).TNEXT.TNOW,Xx(100)
CONMON/UICOt41/NUMQS,CONTROL(20 , NUMCUST(20) .ANEANt(201 .30(20).
ICYSTART, SYSTIME, ISTREAM( 20), NUNBR, NUN4CYC, IBTCHSZ, ICYCCNT, NUNCSTS,
1 NUNCO14P

C
C READ NUMBERS OF QUEUES. BRANCHES, AND CUSTOMERS

READ (5,10) NUMQS,NUM8R,NUMCSTS
10 FOR14AT(31'4)
C
C READ MEANS, STANDARD DEVIATIONS. AND RANDOM NUMBER STREAKS
C FOR QUEUES THEN BRANCHES

00 30 I=1,NUMQS+NUMOR
READ (5,20) AMEAN(I),SD(I).ISTREAN(I)

20 FORMAT12FI0.5,11)
30 CONTINUE
C
C READ BATCH SIZE AND TOTAL NUMBER OF CYCLES
C

READ (5,35) IBTCHSZ
35 FORM4AT (12)

READ (5,37) NUNCYC
37 FORM4AT (16)

I CYCCNT-O
DO 140 1-1,20
CONTROL( I)-O.O
NUMCUST( I )=

'40 CONTINUE
SYSTIME-0.0
NUJ4COMP-0
DO '45 1,12

'45 XX(I)=O.0
WRITE(6,50) NUMQS, IBTCHSZ,NUMCYC,NUMCSTS

50 FORMAT(1X.*THERE ARE*.12.* QUEUES. BATCH SZ IS *,12,/,1X,
1 -SIMULATION IS FOR -,16,- CYCLES.,/,)X,
1 *THERE ARE-,I3,- CUSTOMERS.-)
WRITE(6,60)

60 FORMAT(1X,*FILE-,1OX,*MEAN*.12X,-S0-,12X,-STREAM*)
DO 90 11l,NUMQS

WRITE(6,8O) I,AMEAN(I).SD(I),ISTREAMqI)
60 FORMAT1X,-QUEUE *,I2,3X,FlO.5,5X,F1O.5,lOX,I2)
90 CONTINUE4

CYSTART=TNOW
C
C LOAD INITIAL CUSTOM4ERS
C

ATRIB(I )=0.O
DO 100 11l,NUMCST3

100 CALL FILEMI1,ATRIS)
RETURN
END
SUBROUTINE CYCLEC( I FN)
COIHDN/SCOMI/ATRIS(100),DO(100),OOL(100),DTNOWI I,MFA,MSTOP,NCLNR

* 1,NCRDR,NPRNT,NNRUNNNSET,NTAPE.5S(100),5SL(100).TNEXTTNOW.XX(100)
COMMON/UCOM1 /NUMQS. CONTROL( 20), NUNCUST( 20), ANEAN( 20), 60(20),

ICYSTART, SYST INC I STREA4( 20) ,NUMSR. NUNCYC, STCNSZ, ICYCCNT, NUNCITS,
1 NUNCOMP
DIMENSION SUSY(2O)

C
C CHECK FOR TOUR DEFINING STATE
C
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IF (I .ME. NUNCSTS) RETURN
C
C A NEW CYCLE IS STARTING
C

I=ICYCCNT
I CYCCNT=I CYCCNT+l

I =MOD( I, IBTCHSZ)
IF (11 .ME. 0) RETURN

IF (I.EQ.0 .ANO. IB3TCI4SZ.NE.1) RETURN

C SV ATBTHDDT
C SV ATBTHDDT

ALHTC.YTR
DO 20 I=NUNQCSR
CAL TTTL I-,UAVUNTDT
CALUSY( IUT UNTD

20 CON IU N
IF CONINUEZ E.1)G T 0
I0 30TCS E=.UQ. )G T 0

C O3 =,UQ
CSTDADZSRVC-IECNRL
CSTNADZSEVC-IECNRL

AMNUMCUST( I
CONTROL( I)=(CONTROL( I)-A*AHEAN(I) )/(SD( I)*SQRT(A))

30 CONTINUE
DO 40 I-1,MUMBR

J-1+NUNQS+ I
NUNCUST(J )-XX( I *2-1)

C STANDARDIZE FLOW CONTROLS

A=t4UNCVST( J)
CONTROL(J)()( *2)-A*AMEAN(J))/(S0(J)*SQRTCA))
BUSY(J )=0.0

40 CONTINUE
105 WRITE(8. 107) ALPHA,SYSTINE,NUCO4P,

(BUSY(1).NUMCUST(),CONTROL(I),1I1,
6 )

107 FORMAT(2F10.4, 14,6(FIO.L4. 14, F1O.14))

C
* C CHECK FOR END OF SIMULATION

C
IF(ICYCCNT GCE. NUHCYC) HSTOP-1

C
C REINITIALIZE FOR NEXT CYCLE
C

SYSTIMEO0.0
NUMCO4PO
DO 120 1s1,NUMQS+NUMBR
CONTROL( )O.0
NUNCUST( I )w0

120 CONTINUE
DO 125 Isl,2

125 XX(I)mO.O
CYSTART-TNOW
CALL CLEAR
RETURN
END
SUBROUTINE TTUTL( IACT,UAVO,UINTDT)
DIMENSION NSET(1)
DIMENSION NND(2,2)
COMMON QSET(1)
CONMON/SC*M1/ ATRIB(100 O(1OO),DDL(100),DTNOW, li.NFA,MSTOP,NCLNO

lNCRDR,NPRNT,NNRUNNNSETI,MTAPE,SS(1),SSL(10)TNEXTTNOW(lDO)
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IF (NSET(K)-11) 90,80,180
80 NFSN=NSET(K+61

IF(NFSN.GT.O.OR.NSET(K+7).GT.O) GO TO 180
NTYPU1
KK=K+7
GO TO 100

a90 NSSRNSET(K41
IF (NSSR.EQ.O) GO TO 160
NTYP=2
KK-K+6*I4SET( K+S)

C
C*** COMPUTE AND WRITE SERVER STATISTICS
C

100 IF (IK.EQ.1) GO TO 110

110 NCAP=NSET(KK+13)
I NOEXAMSET( KK*3 I
IF (INDEX.NE.IACT) GO TO 170
IF (XT.LE.O.) GO TO 200
XBUSY-NSET( KK+12)
I BUSY=XBUSY
SLCK-NSET(KK+11J
TDEL-TNOW-QSET( KK+6)
XBT=XBUSY*TDEL
UINT-(QSET( KK+14)+XBT)
UTIL = UINT/XT
UAVG UTIL
DT = XT
STD=( QSET( KK+14)XBUSYXBT)/XT-UTI L*UTI L
ST~oSIGN(SQRT(ABS(STD) ),STD)
BLCK=( QSET( KK+5 J+BLCK*TOEL)/XT
XBMAX=QSET( KK+7j
XIMAX=QSET( KK+S)
IF (NCAP.GT.1) GO TO 130
IF (IBUSY.EQ.1) GO TO 120
IF (TDEL.GT.XIMAX) XIMAX-TDEL
GO TO 1*40

120 IF (TDEL.GT.XB#4AX) XBMAX-TDEL
GO TO 1540

130 IF (XBUSY.GT.XBMAX) XBMAX-XBUSY
XI0L=-NSET( KK)
IF (XIDL.GT.XIMAX) XIMAXOXIOL

140 CONTINUE
GO TO 200

170 KK=NSET(KK+1)
IF (KK.GT.O) GO TO 100

180 CONTINUE
GO TO 200

190 CALL ERROR (568)
200 RETURN

END
SUBROUTINE UMONT( ITRACE)
COMMON/5C014/ATRIB( 100),0D( 100),OOL( 100).OTNOW,1II MFA,NSTOP,NCLNR
1,NCROR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100)
XX(50)=NNACT( 1)4NNQ( 1)
XX(51 )NNACT(2)+NNQ(2)
XXj52)-NNACT(3 )4NNQ( 3)

END

MEN
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* OGEN.DENNY.SVSTE 4.h6/15/81;
LJN.4.2, 10;
NETWORK;
ONE GOON;

ACT.USERF( 1 ;
QUCUEC 1;
ACT(5)/1,USERF(5);

ASS IGN.XX(1)=XX(1)+l.;
ACT,, .25,Q2;
ACT, .75MQA;

Q2 QUEUE(2);
ACT/2,USERF(6).Q.Q

Q3A ASSIGN,XX(2)=XX(2)*1.;ACT,, ,Q3;
Q3 QUEUEM3;

ACT/3,USERF(7), ,QJ.;
Q4. QUEUE(I;

ACT/14,USERF(S);
ASSIGNXX(3)2XX(31*1 .0*
ACT,, .9,ONE;
ACT,,. 1,Q3B;

Q38 ASSIGN,XX(i4)=XX(4)+1;
ACT, ...Q3;

ENDNETWORK;
INlIT,O;
FIN;
144 7

10. 10. 9
1.5 1.5 9
1.0 1.0 9
.5 .5 9
.75 .43 9

.1.3 9

60000
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PROGRAM REORE( INPUTOUTPUT. TAPE5uINPUT.TAPE6OTPUTTAPE7)
DIMENSION X(50).CB(5O.1).Y(50).CT(5O.4).Z(50),CBSAR(1),

1 CTBAR(4),SICMAB(1,1),S6G;MAT(4,4),RR(50,2),
I DELTAB(1),DELTAT(4),CAMA1'[.UETA(4).

1 A(5O),S(50),SIMASI(1I ),SIGMATI(4,4)
NTCONT4
NBCON[=1
I SAMPSZ=50

* ZVAL1.645
NEXPCTwO
NUMEXPI
RTRUE=1 .0
BIASR=O.0
BIASRHO0.0
BIASRIIT-O.O
GIASRHB=O.0
VARR=O. 0
VARRNAT=0.0

5 DO 20 1u1,ISAMPSZ
REAO(5, 10) X( I),Y( I),C8( I,1),CT(I,1)

10 FORMAT(2F.4,2(1OX,FIO.*&))
20 CONTINUE
C
C PERFORM BOTTOM REGRESS ION
C

CALL MEAN(XBAR,CBBAR,ISANPSZ.NBCONTXClS)
CALL SIGMA(CBCB8AR. ISAMPSZ.NBCO#ETSIGMAB)
CALL DELTA(CBX8AR,C88AR, ISAMPSZ.NDCONTOELTAB)

CCALL RECRESS(GAHMAJ SIGMB, SIOMABI ,DELTAB, NBCONTI

C

BBAR0.0
00 30 IzlISAMPSZ

SUMSO.O
DO 25 Jal,NBCONT

25 SUM=uSUM4GAMM4A(J)'CB( 1,J)
8(1 3aX( I)-SUM
SBARB8BAR+B( I)

30 CONTINUE
BBARuSAR/ ISAMPSZ

C
C PERFORM TOP REGRESSION
C

YBAR=0.0
DO 40 Ia1,ISAMPSZ

40 YSAR=YBAR+Y( I)
YUARwYSAR/ ISANPSZ
R-YWA/XBAR
ZOAR=YSR-R*BBAR
DO 50 11l,ISAMPSZ

so Z( I IY(I I-ROB I
DO 70 1u1,NTCONTI
CTSAR( I )O.O
D0 60 j1.I.ISAMPSZ

60 CTAR W [)=CTBAR( I )CT(J, I)

70 CTBAJI ).CTSAR( 1)1I SAMPSZ
CALL SIONA CT CTAR, ISAM4PSZ,NTCONT,SIOMAT)
CALL DELTA Z.CTTZSACTBAR, ISAMPSZNTCONTDCLTATI
CALL REORES S(SETA, SIOMAT,SIOMATI ,OELTAT,NTCON1)

C
C DETERMINE NUMERATOR
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ASAR-O. 0
DO 60 t.1,SAMPSZ

SUMMO.0
00 75 Ju1,NTCONT

4 75 supqSW14ISTA(J)*CT(I,J)
A( I )Y( )-SUN
AbAR-ABMRtA( I)

so CONTINUE /SMSAARAMBR/ISMZ
C
C GET POINT EST114ATE

C RHAT*ABAR/BWA
RIATOYSAR/80AR
RHATTOASAR/XSAR

C
C GET CONFIDEN4CE INTERVAL

C SU1O.0

00 90 lsl1NTCONT
90 SUM wSUM1 +BETA( I)*CT3AR(*I)

Iyo 100 I=1,NBCDNT
100 SUM2=SU2+0~4M( I )*8A( I)

SU14TRNUSU141 -RHAT*SUN42
VAR=0. 0
VAR-0. 0
DO 110 I1ISAHPSZ

VARtVAR(A( I)-RMAV'B8(1I)+SUNTR)*02
VARlmVARl+jY( J)-R

4X1 j))**2
110 CONTINUE

AN I SA14PSZ
VAN-=VAR/ AN*8A**(AN- .0))
VAR~vAR1/( AN*X3AR*2*(AN-1.0))
ZVAL1BZVAL*SQRT( VAR)
ZVAL20ZVAL*SQRT( VARI)
CI LOwsRNAT-ZVALl
CIHION.IWAT+ZVALI
Cl LOW1UN-ZVA.2
CI III ONIR+ZVAL2
SR.R-RTRUE
SRNAT=RHAT-RTRUE
SRNTS.RNtATS-ATRUE

WRRE7, A0 T.CILGW,C0IN, VAR,Rf. CIL0WI.CI Ol.VR

* 120 FOP44AT~IX SF8.5)

S IASR14OS IASRIIS*SRHAT7
VARNUVARVARI
VARRNATuVARIWATVAR

416 NEXPCTsNitXPCT1l
A M i )PC ,I R N A TRRI Nl PCT,12 we~
iF("EXPCT.LT NUKVIP) 00 TO 5

*IASIASR/Af

* U S IASRIT*IASRNT/AN
el -OWNWANIS/
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R142-0.0
VARI uVARR/AN
VAR2=VARRHAT/AN
VARRED=( VARI-VAR2)/VARI
WRITE(7,1I&O) BIASR,BIASRII.BIASRHNBIASRHT,VARRED

140 FORtAT(1X,*BIAS IN CLASSICAL=*,FIO.4./,
I 1X.-SIAS IN CONTROLLED TOP AND BOTTOI4=*,F10.4,/,

I 1X.*B1AS IN CONTROLLED BOTTOM4*,FIO.t4,/,
I IX.*BIAS IN CONTROLLED TOP-*,FlO.4./.
I 1XD*VAR REDUCTION IN CONTROLLED TOP AND *0TTOq*,FlO.4)
STOP
END
SUBROUTINE DELTA(X,CXB3AR.CBAR.N,NP,DELTAMT)
DIMENSION X(N),CCNNP).CBAR(NP),DELTA4T(NP)

* AN=N-1
DO 20 Iul,NP
SIMO. 0
00 10 Ja1.N

10 SUN.SUM4IC(J. I)-CSAR( I))*(X(J)-XDAR)
DELTA1MT( I)-SUM/AN

20 CONTINUE
RETURN
END
SUBROUTINE REGRESS(BETASIGMNIT.SIGMAI,DELTANT,NP)
DIMENSION 8ETA(NP),SIGNAN4T(NP,NP),DELTAMT(NP),SlGN4AI(NP,NP)
CALL MATINV(SIG4AIT,NP,SICNAI)
DO 10 I=1,NP

BETA( I )O.0
DO 20 J=1,NP

20 BETAI I)zBETA( I)+SICMAI( I,J)*OELTANT(J)
10 CONTINUE

RETURN
END
SUBROUTINE SIGM.A(C,CBAR,N,NP.SICKtANT)
DIMENSION C(N,NP),CBAA(NP),SIONANT(NP,NP)
AN-M-1
D0 30 Ial,NP

00 20 J.1,NP
5434.0.0
00 10 K.1,N

10 SUN.SUM+(C(KI )-CBAR( I))-(C(KJ)-CUAR(J))
SIGMANT( I,J)=SUM/AN

20 CONTINUE
30 CONTINUE

RETURN
END
SUBROUTINE MEAt(XBAR CARN,NP,X,C)
DIMENSION CBAR(P),X(N),C(N,NP)
AllaN
XBARO.0
DO 10 11l,NP

10 CSAR(I)s0.O
00 30 .I-1,N

XMRftXSAR+X(J)
DO 20 Iul,NP

4 20 CWA(I)=CBARI)4C(J,I)
30 CONTINUE

XWAN.MAR/AN

110 COAR(I).CBAR(I)/AN
RETURN
END

g SUBROUTINE 1MATINV(AM4T,N,AINV)
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DIMENSION AMT(N.N),AINV(N.N3
HUIN
IF(II.GT.1) GO TO 5
A INV( 1,1)in1./AMT(l,l)
RETURN

5 00 15 1=1.11
DO 10 J-1,11

10 AINV(I.J)inO.O
A INV(I,1I)

1 .O
15 CONTINUE

DO 35 1=1,11
AX='ANT( I. )
Do 20 J=1,11
AMT( I.J)-AT(I.J)/AX
AINV( iJ )AINV( I,J)/AX

20 CONTINUE
DO 30 KA1.III IF (I .EQ. K) GO TO 30
AX=-1.*AMT(K, I)
DO 25 Jsl,II
ANT(K.J)-ANT( I.J)*AX.AMT(K,J)
AINV(K.J)UAINV( I,J)*AX4AINV(K,J)

25 CONTINUE
30 CONTINUE
35 CONTINUE

RETURN
END
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